Le quattro operazioni Un approccio integrato basato sui problemi.

Slides:



Advertisements
Presentazioni simili
LA STRUTTURA MOLTIPLICATIVA
Advertisements

Un approccio integrato basato sui problemi
LA STRUTTURA MOLTIPLICATIVA PARTE PRIMA LA RAPPRESENTAZIONE PROGETTO RHODA ‘numeri con qualità ’
PROPORZIONI E RAPPORTI. Divisioni Es. di divisioni in problemi. 1)Devo distribuire sei biscotti tra 2 amici; quanti biscotti per ciascun amico?
TESTO DEL PROBLEMA: “Inserire i numeri in una tabella seguendo queste indicazioni: il numero 2 va posto alla destra di 8 e sotto al 4, il numero 6 va posto.
L’addizione ESEMPIO Rappresentazione
Uno schieramento, tante operazioni
Le frazioni Che cosa è una frazione.
NUMERI RELATIVI I numeri relativi comprendono i numeri positivi, negativi e lo 0 Esempio: +10, -5, +3, 0, -2 I numeri relativi si possono trovare all’interno.
POTENZE
Basi di dati - Fondamenti
Prof.ssa Carolina Sementa
Progettazione di una base di dati relazionale
Statistica I Grafici Seconda Parte.
Proporzioni Nella giusta misura!.
Le Frazioni.
I Problemi con gli Stecchini
Coding unplugged e con il PC nella scuola primaria
Le operazioni con le frazioni
Universita’ di Milano Bicocca Corso di Basi di dati 1 in eLearning C
Prove dell’esistenza di Dio
Misure dei valori centrali
Statistica Prima Parte I Dati.
CI e Ne.
L’integrale indefinito
Tre diversi materiali:
x : variabile indipendente
A qualcuno di loro sarà venuto in mente di dividere ulteriormente i triangoli per accorgersi che quelli più piccoli sono.
GLI INSIEMI NUMERICI N – Z – Q – R – C
Progettazione di una base di dati relazionale
GLI INSIEMI Prof.ssa Maura Roberta Orlando
Cluster Analysis Definizione di Classificazione: operazione concettuale condotta adottando un solo criterio (detto fondamento della divisione) per individuare.
x : variabile indipendente
La normalizzazione delle relazioni
Le Potenze esponente potenza c volte base elevato
INVENTO PROBLEMI A DUE OPERAZIONI
Prof.ssa Carolina Sementa
PRONOMI COMBINATI.
Organizzazione fisica
Le quattro operazioni.
L’articolo.
Laboratorio di Didattica della Matematica Il metodo Bortolato.
Uso ragionato delle parentesi
Rapporti e proporzioni
L’addizione ESEMPIO Rappresentazione
Basi di dati - Fondamenti
I MATEMATICI DELLA G.CENA FESTA DEL π
I numeri relativi DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). ESEMPI Numeri.
Numeri e conti presso gli antichi Sumeri
Operazioni su Naturali
ALIQUOTE IRPEF 01/01/2019 ALIQUOTE IRPEF Uso Intero/Esterno Livello
Le espressioni algebriche letterali
I NUMERI REALI ( ) come ampliamenti successivi
INVENTO UN PROBLEMA A 2 OPERAZIONI
Potenze nell’insieme N
Ricorsione 16/01/2019 package.
Problemi con Relazioni
Codici rilevatori di errori
Definizione di linguaggio di programmazione
Problemi con Relazioni
= 17 somma addendi + ADDIZIONE
Le operazioni con le frazioni
L’ELEVAMENTO A POTENZA
Le 4 operazioni.
Le 4 operazioni.
IL PRESIDENTE DELLA REPUBBLICA
L’operazione inversa è la sottrazione
Insiemi 25/06/2019.
PROPRIETA’ DELLE POTENZE
Vincoli di Integrità Non tutte le combinazioni possibili di valori dei domini su cui è definita una relazione sono accettabili. Alcuni attributi possono.
Transcript della presentazione:

Le quattro operazioni Un approccio integrato basato sui problemi

Sviluppare il senso delle operazioni Uso di problemi contestuali (o “realistic problems”) Attenzione alle parole chiave! Uso dei modelli Analisi dei problemi e spiegazioni

Significato formale e intuitivo delle operazioni: l’addizione (I) Primo problema. Giovanni ha 4 caramelle. La mamma gliene dà altre 7. Quante caramelle ha Giovanni adesso? Secondo problema. Giovanni ha speso 4 Euro. Gliene rimangono in tasca 7. Quanti Euro aveva prima? Terzo problema. Giovanni ha giocato due partite. Nella prima ha perso 4 punti, ma alla fine della seconda aveva 7 punti in più rispetto alla situazione iniziale. Cos’è successo nella seconda partita?

Significato formale e intuitivo delle operazioni: l’addizione (II) Questi tre problemi hanno in comune: Il numero delle operazioni da eseguire; Il tipo di operazione da eseguire; Gli operandi; La soluzione. Tuttavia: Nel primo problema (problema anterogrado: “trova lo stato finale”) le risposte corrette sono quasi il 100% già in prima primaria. Nel secondo problema (problema retrogrado: “trova lo stato iniziale”) vi è un’ampia maggioranza di risposte corrette solo in quarta-quinta primaria. Nel terzo problema (problema di livello superiore: “trova il primo operatore”) le risposte corrette, ancora in seconda media, sono solo il 25%.

Significato formale e intuitivo delle operazioni: la sottrazione Primo significato: “Togliere via da…”. Il significato formale e quello quello intuitivo coincidono. Esempio: Se togliamo 3 palline da un insieme di 10 palline, quante palline rimarranno? Secondo significato: “Arrivare a…”. Il significato formale e quello intuitivo divergono. Esempio: ho 7 palline, ma me ne occorrono 10 per giocare. Quante palline devo aggiungere a quelle che ho già per poter continuare a giocare?

Le quattro strutture di base per i problemi additivi e sottrattivi (Carpenter e Moser, 1983; Gutstein e Romberg, 1995) Cambio Cambio Q. iniziale Q. finale Q. iniziale Q. finale Separazione Unione Differen za Tutto Parte Parte Insieme piccolo Insieme grande Parte-tutto Confronto

Problemi di unione Il cambio viene aggiunto alla q. iniziale e forma il tutto (la q. finale) INCOGNITA: Q. FINALE Sandra ha 8 palline. Giorgio gliene dà altre 4. Quante palline ha Sandra in tutto? INCOGNITA: CAMBIO Sandra ha 8 palline. Giorgio gliene dà alcune in più. Adesso Sandra ne ha 12. Quante palline le ha dato Giorgio? INCOGNITA: Q. INIZIALE Sandra ha alcune palline. Giorgio gliene dà 4. Adesso Sandra ne ha 12. Quante palline aveva Sandra all’inizio? + ? - ? - ?

Problemi di separazione Il cambio viene tolto dal tutto (la q. iniziale) e forma la q. finale INCOGNITA: Q. FINALE Sandra ha 12 palline. Ne dà 4 a Giorgio. Quante palline ha Sandra adesso? INCOGNITA: CAMBIO Sandra ha 12 palline. Ne dà alcune a Giorgio. Adesso ne ha 8. Quante ne ha date a Giorgio? INCOGNITA: Q. INIZIALE Sandra ha alcune palline. Ne dà 4 a Giorgio. Adesso ne ha 8. Quante palline aveva Sandra all’inizio? - ? - ? + ?

Problemi parte-tutto Due parti vengono combinate (fisicamente o mentalmente) in un tutto ? INCOGNITA: TUTTO Giorgio ha 4 Euro e Sandra 8 Euro. Mettono insieme i loro risparmi in un porcellino. Quanti Euro hanno messo nel porcellino? INCOGNITA: PARTE Giorgio e Sandra mettono insieme i loro risparmi, 12 Euro, in un porcellino. Giorgio ci ha messo 4 Euro. Quanti Euro ci ha messo Sandra? + - ?

Problemi di confronto Due insiemi, uno più grande e uno più piccolo, vengono confrontati. La terza quantità è la differenza tra i due. ? INCOGNITA: DIFFERENZA Sandra ha 12 palline e Giorgio ne ha 8. Quante palline ha Sandra in più di Giorgio? INCOGNITA: INSIEME PICCOLO Sandra ha 4 palline in più di Giorgio. Sandra ne ha 12. Quante ne ha Giorgio? INCOGNITA: INSIEME GRANDE Sandra ha 4 palline in più di Giorgio. Giorgio ne ha 8. Quante ne ha Sandra? - - ? + ?

Due strutture di base per i problemi moltiplicativi e di divisione (Greer, 1992) Grup po 1 Grup po 1 Grup po 2 Grup po 2 Ins. riferim ento Grup po 3 Grup po 3 Prodotto Prodotto Grup po N Grup po N Gruppi uguali Confronto moltiplicativo

Problemi di gruppi uguali Vi è un certo numero di gruppi ciascuno dei quali contiene un’uguale quantità di oggetti. INCOGNITA: PRODOTTO (MOLTIPLICAZIONE) Marco ha 4 sacchetti di mele. In ogni sacchetto ci sono 6 mele. Quante mele ha Marco in tutto? INCOGNITA: QUANTITA’ DI OGGETTI (DIVISIONE DI PARTIZIONE) Marco ha 24 mele da distribuire in parti uguali ai suoi 4 amici. Quante mele riceverà ogni amico? INCOGNITA: NUMERO DEI GRUPPI (DIVISIONE DI CONTENENZA) Marco vuole mettere le sue 24 mele in cassette da 6 mele ciascuna. Quante cassette userà Marco?

Problemi di confronto moltiplicativo Vi è un insieme che consiste di più copie di un altro (l’insieme di riferimento), a sua volta formato da un certo numero di oggetti. INCOGNITA: PRODOTTO (MOLTIPLICAZIONE) Giulia ha 6 caramelle. Marco ha 4 volte le caramelle di Giulia. Quante caramelle ha Marco? INCOGNITA: QUANTITA’ DI OGGETTI NELL’INSIEME DI RIFERIMENTO (DIVISIONE DI PARTIZIONE) Marco ha 24 caramelle. Marco ha 4 volte le caramelle di Giulia. Quante caramelle ha Giulia? INCOGNITA: NUMERO DELLE COPIE (DIVISIONE DI CONTENENZA) Marco ha 24 caramelle, Giulia 6. Quante volte le caramelle di Giulia ha Marco?