Legge di Coulomb (bilanciamento forze elettriche)

Slides:



Advertisements
Presentazioni simili
(a) (b) LEGAME CHIMICO ED ENERGIA
Advertisements

Legge di Coulomb (bilanciamento forze elettriche)
teoria dell’orbitale molecolare (MO)
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
LEGAME CHIMICO Solo raramente si trovano in natura sostanze costituite da atomi isolati. In genere gli atomi si trovano combinati fra loro in composti.
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
16.
Il legame ionico è il legame che si instaura tra ioni di carica opposta per effetto della forza di attrazione coulombiana. Legame ionico.
Slides Ordine e legame chimico La configurazione di equilibrio ( o stabile), comporta il max addensamento possibile delle Particelle, ovvero.
IL LEGAME METALLICO Gli elementi del “gruppo” dei metalli si distinguono per la relativa facilità con cui possono rimuovere gli elettroni del guscio esterno.
Lo stato solido gas solido liquido disordine ordine TS
Piccioni Sara e Fidanza Davide;
Transizioni (o passaggi) di stato
Legame ionico Il legame ionico è il legame che si instaura tra ioni di carica opposta per effetto della forza di attrazione coulombiana.
Capitolo 13 I legami chimici 1 © Zanichelli editore,
Le interazione intermolecolari
Dal legame ionico al legame covalente
Copertina 1.
Il nuovo Invito alla biologia.blu
13 CAPITOLO I legami chimici Indice Legami chimici e simboli di Lewis
Le interazione intermolecolari
La forma delle molecole e le forze intermolecolari
Dalla struttura atomica
Dalla struttura atomica
TEORIA VSEPR VSEPR = Valence shell electron pairs repulsion
GEOMETRIA MOLECOLARE O H O-C-O Lineare OCO=180° ^ Piegata HOH=105° ^
13/11/
7 CAPITOLO I legami chimici Indice 1
Le sostanze Chimiche a.s
LEGAMI COVALENTI Presi due elementi elettronegativi (due non metalli) supponiamo che si possa formare una coppia ionica. Per compensare 711 KJ i due ioni.
Il legame chimico Claudio P. Lezioni
COS’E’ IL LEGAME IONICO
Dalla struttura atomica
Forze intermolecolari
Formazione di legami chimici
Figura 1-9 Schema della decomposizione di carbonato di calcio con formazione di un solido A (56.0% in massa) e di un gas B (44.0% in massa).
Il carbonio e la chimica organica
La forma delle molecole e le forze intermolecolari
Il comportamento di una sostanza può essere interpretato in maniera completa solo se si conosce anche la natura dei legami che tengono uniti gli atomi.
Esistono orbitali atomici con le forme adatte
Sandro Barbone Luigi Altavilla
e- Perché H2 e non H? IL LEGAME CHIMICO He e non He2? H2O e non H3O?
GEOMETRIA MOLECOLARE O H O-C-O Lineare OCO=180° ^ Piegata HOH=105° ^
Capitolo 11 Teorie del legame covalente.
Sandro Barbone Luigi Altavilla
Capitolo 12 Forze intermolecolari:
Capitolo 10 Le forme delle molecole.
Dalla Struttura degli atomi e delle molecole alla chimica della vita
Dalla Struttura degli atomi e delle molecole alla chimica della vita
Il Legame Chimico e la Struttura Molecolare
Daniele Casagrande Argomenti di biologia.
La forma delle molecole e le forze intermolecolari
e- Perché H2 e non H? IL LEGAME CHIMICO He e non He2? H2O e non H3O?
7 CAPITOLO I legami chimici Indice 1 Legami chimici e simboli di Lewis
Attrazione elettrostatica
Forze intermolecolari
1.
1.
1.
1. I limiti della teoria di Lewis
Valitutti, Falasca, Amadio
1.
Forze intermolecolari
1.
Le interazione intermolecolari
Le Interazioni Intermolecolari
7 CAPITOLO I legami chimici Indice 1 Legami chimici I simboli di Lewis
Transcript della presentazione:

Le teorie sul legame chimico (ionico, covalente e metallico) si basano su: Legge di Coulomb (bilanciamento forze elettriche) Meccanica quantistica (posizione e movimento degli e-)

Nei legami chimici sono coinvolti gli elettroni di valenza (periferici)! ENERGIA DI LEGAME

Composti con legami ionici Legame ionico di natura elettrostatica si realizza tra 2 elementi aventi una bassa I ed un’alta A I composti ionici sono duri, rigidi e fragili, hanno alte Tf e T eb, allo stato fuso sono conduttori di elettricità, si sciolgono in solventi polari nei quali possono condurre la corrente elettrica. Composti con legami ionici

CARATTERISTICHE DEI COMPOSTI IONICI I composti ionici sono tutti solidi a temperatura ambiente. Hanno in genere punti di fusione elevati e punti di ebollizione ancora più elevati, per cui è difficile farli passare allo stato di vapore. Ciò indica che l’attrazione fra gli ioni è forte, per cui occorre molta energia per separarli.

Caratteristiche dei composti ionici allo stato liquido Quando il composto ionico è allo stato liquido, ogni ione è circondato da ioni di segni opposto; per le caratteristiche proprie dei liquidi, gli ioni non sono vincolati a posizioni fisse, ma possono muoversi attraverso il liquido. Ciò spiega perché i composti ionici allo stato liquido sono in grado di condurre corrente elettrica. Si ha, perciò, un passaggio di corrente quando delle particelle carche si muovono. Se nel liquido si immergono due elettrodi aventi cariche di segno opposto, gli ioni positivi migrano verso l’elettrodo negativo, mentre gli ioni negativi vanno verso l’elettrodo positivo. elettrodo positivo (+) elettrodo negativo (-) + + + Direzione di migrazione degli ioni verso i due elettrodi immersi in un composto ionico allo stato fuso. + + + + + +

Formazione del legame ionico nel cloruro di sodio (NaCl) 1 – L’atomo di sodio perde il suo elettrone esterno e diventa uno ione positivo. = Atomo di sodio (Na) Na Na+ + e-

2 – L’atomo di cloro acquista l’elettrone perduto dal cloro e diventa ione negativo. Cl + e- Cl-

3 – I due ioni, avendo cariche elettriche di segno opposto, si attirano e restano uniti. = Atomo di sodio (Na) = Atomo di cloro (Cl) Na+ + Cl- NaCl

Nei cristalli ionici non sono presenti molecole ben definite, ma un numero grande di ioni presenti in un dato rapporto (Na:Cl, 1:1)

Legame covalente dovuto alla condivisione tra 2 atomi di 1 o + coppie di e- in modo che ciascun atomo raggiunga la configurazione di un gas nobile (teoria di Lewis). Le coppie elettroniche si formano per accoppiamento di elettroni spaiati.

Il legame covalente si forma fra atomi la cui differenza dei valori di elettronegatività non è maggiore di 1,7. I due atomi mettono in comune un elettrone ciascuno. Gli elettroni che vengono messi in comune sono elettroni spaiati, cioè elettroni che si trovano isolati in un orbitale. Quando i due atomi si avvicinano a sufficienza, avviene una parziale sovrapposizione dei due orbitali in cui si trovano gli elettroni spaiati: i due orbitali si compenetrano l’un l’altro per una certa regione di spazio, che apparterrà contemporaneamente ad entrambi gli orbitali e di conseguenza gli elettroni che si trovano in questi orbitali apparterranno contemporaneamente ai due atomi. Il legame covalente è il legame chimico più forte e si distinguono due tipi di legame covalente: 1 - il legame covalente puro; 2 - il legame covalente polare.

Legame eteronucleare più o meno polarizzato Legame omonucleare

Legame covalente omonucleare Legame covalente eteronucleare Legame covalente dativo

Un legame covalente polare si forma tra atomi che hanno elettronegatività diversa, ma non tanto diversa da rendere possibile la formazione di un legame ionico (la differenza dei valori di elettronegatività è sempre minore di 1,7). I due atomi mettono in comune i loro elettroni spaiati, tramite la sovrapposizione degli orbitali in cui si trovano questi elettroni. Tuttavia la coppia di elettroni non è equamente condivisa fra i due atomi: gli elettroni passano più tempo attorno all’atomo più elettronegativo, rendendolo parzialmente negativo, mentre l’altro atomo diviene parzialmente positivo.

Teoria di Lewis Teoria del legame di valenza Teoria dell’orbitale molecolare

Formule di struttura Formule di Lewis  elettroni di valenza (elettroni spaiati o spaiabili) indicati come punti e coppie elettroniche come trattini Le coppie non utilizzate nel legame (trattini) si chiamano doppietti solitari Le formule di Lewis non danno nessuna indicazione circa la disposizione spaziale o geometria dei legami I simboli di Lewis mettono in evidenza la configurazione elettronica esterna: elettroni di valenza

Legame omonucleare Legame eteronucleare

o di coordinazione Un atomo mette a disposizione una coppia elettronica e l’altro un orbitale vuoto per riceverli donatore accettore N.B.: questo tipo di legami non sono diversi dagli altri legami covalenti

Possiamo considerare alcuni esempi: Una molecola biatomica contenente un legame polare è sempre polare, cioè ha un’estremità positiva e un’estremità negativa. Nel caso di molecole con più di due atomi, la situazione può essere diversa, e dipende dalla geometria della molecola e dalla somma vettoriale dei momenti dipolari associati ai vari legami polari. Possiamo considerare alcuni esempi: - la molecola dell’acqua (H2O) - la molecola del biossido di carbonio (CO2)

Momento di dipolo: Prodotto della carica per la distanza La risultante dei momenti di dipolo dei singoli legami nella molecola ne determina la polarità o apolarità.

La disposizione geometrica dei legami attorno ad un atomo dipende dal numero totale di coppie elettroniche (di legame e solitarie) che lo circondano Le coppie elettroniche si dispongono nello spazio in modo da minimizzare la loro mutua repulsione

Geometria molecolare VSEPR

La disposizione spaziale influenza il momento di dipolo della molecola  m e quindi la polarità totale della molecola

Due modi per mostrare la geometria della molecola NH3

Due modi per mostrare la geometria della molecola di H2O

Polarità delle molecole

Alcune molecole o ioni (es. O3, SO2, ione NO3-, benzene) Possono essere rappresentate da strutture in risonanza  Differiscono per la disposizione degli e- Sono strutture limite o canoniche ma che concorrono alla rappresentazione della struttura reale

Teoria del legame di valenza Il legame chimico viene interpretato alla luce della meccanica quantistica

Sovrapposizione di orbitali atomici - Gli orbitali atomici (OA) che si sovrappongono devono avere energie simili Ognuno dei due atomi deve contribuire con OA che descrivano un solo e- (o una coppia di e- e un orbitale vuoto) La direzione di massima sovrapposizione degli OA corrisponde alla direzione di legame

La molecola N2

Geometria molecolare: orbitali ibridi (Trattazione avanzata della teoria VSEPR) • Si ottengono orbitali ibridi isoenergetici orientati lungo le direzioni dei possibili legami che l’atomo centrale può formare

ibridizzazione sp3 ibridizzazione sp2 ibridizzazione sp C

Teoria del VB

Negli orbitali ibridi può essere alloggiata anche una coppia solitaria

Teoria dell’orbitale molecolare  Introdotta per spiegare le proprietà magnetiche e spettroscopiche di alcune molecole

Teoria dell’orbitale molecolare (OM) Assegna gli elettroni di una molecola a una serie di orbitali, detti orbitali molecolari (OM), che appartengono all’intera molecola Gli OM sono delle funzioni matematiche che descrivono il comportamento di un elettrone in una molecola (analogamente agli OA negli atomi) Gli OM si ottengono per combinazione lineare degli OA Gli elettroni, in numero uguale al totale di elettroni degli atomi della molecola, vengono assegnati agli OM seguendo il principio di Pauli e la regola di Hund

Il legame in una molecola è tanto più forte quanto più elevato è il numero di elettroni in orbitali di legame rispetto agli orbitali di antilegame (n° di e- negli orbitali di legame - n° di e- negli orbitali di antilegame)/2 Ordine di legame: Es. H2, He2, N2, O2

Legame metallico Metalli

Teoria delle bande Quando la teoria OM viene applicata a un numero N grande di atomi uguali, si ottiene un numero totale N di orbitali molecolari a energia ravvicinata, talmente vicini da dar luogo a una banda praticamente continua di energia Per una mole di metallo: NA: numero di Avogadro Vi sono tante bande quanti sono i tipi di orbitali atomici negli atomi isolati; quando sono interessati gli orbitali atomici di valenza, la banda viene chiamata banda di valenza

Se le energie degli OA di partenza sono molto diverse, le bande di energia rimangono ben distinte (es. 1s e 2s); se le loro energie sono vicine (es. 2s e 2p, 3s e 3p), le bande si sovrappongono costituendo un’unica banda Per avere conduzione elettrica (e termica) occorre che la banda di valenza, oppure la banda che si sovrappone a quella di valenza (se satura), sia vuota o parzialmente occupata da e-, in modo che possa costituire una banda di conduzione

Es. Li Es. Be Es. Na Colore dei metalli: assorbimento di radiazioni luminose diverse perché diverso può essere il E tra ultimo livello occupato e primo livello libero (dipende dal metallo).

Es. diamante Tutti i metalli Si e Ge Nei conduttori la conducibilità diminuisce con la T, nei semiconduttori aumenta

Interazioni dipolari: forze di Van der Waals Gas nobili Legame a idrogeno Interazioni dipolari: forze di Van der Waals

FORZE DI VAN DER WAALS Forze dipolo-dipolo indotto Forze dipolo-dipolo Forze dipolo istantaneo-dipolo istantaneo o di London Le forze di Van der Waals sono forze che agiscono a corto raggio: E= - C/r6 Energia potenziale attrattiva

Densità del ghiaccio: 0.9163 g/cm3 caotici ben definiti Il carattere direzionale del legame H fa’ sì che H2O allo stato solido occupi un volume maggiore rispetto allo stato liquido Densità del ghiaccio: 0.9163 g/cm3

Struttura aperta del ghiaccio con legami a H direzionali

Catena di legami a H in HF

Legame a H nell’acido acetico

Legame a H intramolecolare

Struttura a strati di B(OH)3 che permette alla sostanza di essere solida a T ambiente e struttura lamellare che riflette la luce