Il pricing dei derivati: Metodo di Montecarlo, Path Integrals L. Bellucci, G. Cipriani M.Rosa-Clot, S.Taddei Firenze E. Bennati Dip Scienze Econ. (Pisa) M.Cerchiai, C.Giannotti G. Einaudi, P. Rosa-Clot (Pisa) A. Amendolia, (Sassari)
Un indice di borsa: il cambio EURO/$
Analisi dell’indice Ci sono andamenti di lungo periodo Si sovrappongono movimenti veloci Rumore Fisici e ingegneri chiamano rumore tutti quei fenomeni impreditibili che alterano il processo fisico e le sue leggi di fondo Volatilità Gli economisti chiamano volatilità la rapida fluttuazione di un indice o di un prezzo determinata dalle spinte impredittibili del mercato
La legge binomiale Si assume che ci sia una probalbilità definita che abbia luogo un evento (1/2 se si lancia una moneta e si vuole trovare testa) e si chiede con quale frequenza compare testa in un certo numero di lanci. In generale
Eventi casuali Rischio Esempio canonico : il lancio della moneta testa p=.5 croce q= .5 p + q = 1 Distribuzione Binomiale Curva Gaussiana
Legge dei grandi numeri
Distribuzioni di probabilità Come verificare che la legge gaussiana è vera ? Osservando molte volte l’evento ! Quante volte ? Moltissime ! ! ! Processo di Wiener : per il lancio della moneta abbiamo assunto D x= ±1 D x = D w MATALAB: BINOMIALE
Lanci ripetuti:100, 1000, 10000, 50000
Il continuo e il metodo di Montecarlo un semplice caso di barriera
Processo di Wiener In generale assumiamo: D x = m(x,t)Dt + s(x,t) D w In particolare per esempio si ha D r = a (b - r ) Dt + s D w Vasicek oppure D r = a (b - r ) Dt + s Ör D w CIR
Il caso generale: equazioni stocastiche E la corrispondente equazione differezniale Soluzioni analitiche (in pochi casi) equazione differenziale (Fokker Plank) metodo di montecarlo (lunghi tempi di CPU) Metodi discretizzati ad albero
Le tecniche di soluzione Soluzioni analitiche (in pochi casi) Soluzione della equazione differenziale (metodo generale ci sono problemi matematici delicati) metodo di montecarlo (lunghi tempi di CPU) Metodi discretizzati ad albero (funziona bene solo in casi 1D) Metodo dei Path Integral (funziona in 1 2 3 dimensioni ed è rapido e generale)
Un sempio disoluzione analitica IL MODELLO CIR
Una realizzazione del modello CIR
Modelli realistici Il modello di Vasicek ha seri limiti (ammette per esempio tassi di interesse negativi) Un modello migliore è quello CIR (Cox Ingersoll Ross) che sostituisce ad una volatilità costante una legata alla radice del tasso. Tale modello ammette soluzioni analitiche. PROBELMA I : sganciarsi dai modelli e utilizzare i tassi “reali” PROBLEMA II: valutare un funzionale generico
Un esempio :anno 1998 interesse a 30 anni per la lira
Cosa è un funzionale Nella figura accanto tutto quello e supera la linea nera viene pesato calcolato attualizzando il valore col tasso di interesse corrispondente I funzionali possono essere molto complicati: per esempio i possono essere barriere, oppure cedole, oppure il diritto di esercizio di qualche clasuola
Calcolare un funzionale comporta Mediare su tutti i cammini possibili Ma icammini possono dipendere dal funzionale stesso Quindi iterare moltissimi processi mediando i diversi risultati MONTECARLO Discretizzare il processo a step finiti Conoscere la distribuzione di probabilità ad ogni istante Integrare numericamente sulle distribuzioni PATH INTEGRAL
Path Integral 1 Path Integral 1 La distribuzione di probabilità condizionata r(y,t,x,0) dà la probablità di trovare il valore y della variabile al tempo t essendo nota la distribuzione al tempo t=0. Per tale distribuzione vale la legge di composizione
Per piccoli incrementi temporali si ha in generale Path Integral 2 Per piccoli incrementi temporali si ha in generale Con
Path Integral 3 Si tratta ora di effettuare N convoluzioni ottenendo in tal modo l’ampiezza di probabilità per tempi finiti. La grandezza (y-x)/Dt rappresenta una specie di velocità e la funzione L(x,v,t) è la lagrangiana del sistema.
Realizzazione di alcuni cammini Partendo da zero si realizzano 5 diversi percorsi La funzione di trasferimento r è nota per ogni intervallo Dt
Il formalismo di Feymann Wiener formula la teoria degli integrali stocastici nel 1921 Feynman introduce il concetto di path integral in meccanica quantistica nel 42. Non vengono applicati fino al lavoro di Kreutz e Freedman del 1981 (problemi di calcolo) Poi esplodono gli approcci Montecarlo: problema di tempo ma “multidimensionalità” Più recentemente approcci “deterministici”: Rosa-Clot e Taddei. Molto veloci ma bassa dimensionalità: <4. Basta e avanza per i mercati finanziari.
Vantaggi formali e numerici Teoria solidamente fondata Sono noti tutti i casi analitici e le loro possibili estensioni Si riproducono tutti i casi noti in letteratura Sono note molte tecniche approssimate Numericamente stabile Da fondamento più generale agli alberi E’ molto veloce (quanto gli alberi) Permette di estendere a casi complessi la valutazione del funzionale
Il funzionale In genere si tratta di valutare grandezze che dipendono dalla realizzazione del processo stocastico. Esempi tipici sono il cap e la put american
Esempio di un cap Con Questa definizione formale si traduce numericamente in una prescrizione molto semplice: quando il tasso di interesse supera il valore c si calcola attualizzato il valore in eccesso.
Esempio di una put american L’opzione viene esercitata quando il suo valore scende sotto un valore tale da massimizzare il guadagno
Tempi di CPU per il pricing di opzioni
Il problema delle volatilità Un problema aperto e molto complesso è quello delle fluttuazioni non gaussiane degli indici di borsa. In altre parole ci sono scarti molto elevati rispetto al valore della deviazione standard: la teoria prevede che la probabilità di una fluttuazione maggiore di 3 volte la deviazione standard sia 1/1000 In realtà abbiamo spesso deviazioni che sono 10 volte superiori alla deviazione standard
Il problema dei dati: il FIB30
Analisi degli scarti con ritardo di 1 4 16 64 256 1024 tic
Confronto con una gaussiana