Il carbonio e la chimica organica

Slides:



Advertisements
Presentazioni simili
4 – Forze intermolecolari
Advertisements

UNA VISIONE UNITARIA DEL LEGAME CHIMICO È possibile?
IL LEGAME CHIMICO.
Il numero di ossidazione
Concetti di base nella chimica degli esseri viventi
Esistono orbitali atomici con le forme adatte
Ionico (traferimento di e-) Covalente (condivisione di e-)
EI, AE e Elettronegatività: polarità dei legami legame covalente omopolare ed eteropolare dipolo e momento dipolare μ = Qr polarità di legame e polarità.
Geometria molecolare e polarità delle molecole
16.
13/11/
Fondamenti di chimica organica
Slides Ordine e legame chimico La configurazione di equilibrio ( o stabile), comporta il max addensamento possibile delle Particelle, ovvero.
Il legame chimico legame ionico Legame covalente
IL LEGAME METALLICO Gli elementi del “gruppo” dei metalli si distinguono per la relativa facilità con cui possono rimuovere gli elettroni del guscio esterno.
Composti inorganici e loro nomenclatura
Lo stato solido gas solido liquido disordine ordine TS
Transizioni (o passaggi) di stato
Le interazione intermolecolari
Dal legame ionico al legame covalente
Copertina 1.
Il nuovo Invito alla biologia.blu
13 CAPITOLO I legami chimici Indice Legami chimici e simboli di Lewis
Le interazione intermolecolari
La forma delle molecole e le forze intermolecolari
Dalla struttura atomica
Dalla struttura atomica
TEORIA VSEPR VSEPR = Valence shell electron pairs repulsion
Le reazioni di ossido-riduzione
7 CAPITOLO I legami chimici Indice 1
Reazioni Redox o Ossido -Riduzioni
Le reazioni di ossido-riduzione
Forze intermolecolari
La TAVOLA PERIODICA Lezioni 21-23, anno
Reazione Chimica Una reazione chimica è un processo in cui alcune specie chimiche (reagenti) si trasformano in altre specie chimiche (prodotti). Da un.
Formazione di legami chimici
La forma delle molecole e le forze intermolecolari
6.1 Molecole e formule chimiche
Le idee della chimica Seconda edizione
Capitolo 9 Modelli del legame chimico.
Esistono orbitali atomici con le forme adatte
e- Perché H2 e non H? IL LEGAME CHIMICO He e non He2? H2O e non H3O?
Sandro Barbone Luigi Altavilla
Legame covalente omeopolare
Capitolo 12 Forze intermolecolari:
Dalla Struttura degli atomi e delle molecole alla chimica della vita
Dalla Struttura degli atomi e delle molecole alla chimica della vita
Il Legame Chimico e la Struttura Molecolare
Daniele Casagrande Argomenti di biologia.
La forma delle molecole e le forze intermolecolari
Reazioni di ossido-riduzione.
Il carbonio e la chimica organica
forze intermolecolari
Legame covalente omeopolare
7 CAPITOLO I legami chimici Indice 1 Legami chimici e simboli di Lewis
Attrazione elettrostatica
Forze intermolecolari
Copertina 1.
Chapter 3 Lecture Outline
1.
1. I limiti della teoria di Lewis
1.
1.
Forze intermolecolari
Le interazione intermolecolari
Bilanciamento reazioni
Le Interazioni Intermolecolari
7 CAPITOLO I legami chimici Indice 1 Legami chimici I simboli di Lewis
Transcript della presentazione:

Il carbonio e la chimica organica Idrocarburi più semplici etano C2H6 metano CH4 sp3 - 2 H sp3 etene o etilene C2H4 sp2 sp etino o acetilene C2H2 - 2H

Risonanza Ione carbonato CO3-- Ibrido di risonanza C6H6 benzene

Legame covalente omeopolare Non si misura ma si può calcolare a seconda della definizione che ne viene data Elettronegatività Mulliken propose di calcolarla come media aritmetica dei valori di EI ed AE dell’elemento considerato Tendenza di un atomo ad attrarre verso di sé gli elettroni impegnati nel legame Pauling costruì una scala relativa in base ai valori sperimentali delle energie di legame di molecole biatomiche, scegliendo un valore di riferimento Legame covalente omeopolare ed eteropolare dipolo momento dipolare μ = Qr polarità di una molecola polarità dei legami

H2O! DNA! Legami intermolecolari Forze di van der Waals natura elettrostatica molto più deboli dei legami covalenti Legami intermolecolari Forze di van der Waals Legame idrogeno Tra atomo H fortemente polarizzato (H-F, H-O, H-N, con intensità decrescente) ione - dipolo e un atomo fortemente elettronegativo H2O! dipolo - dipolo DNA! dipolo – dipolo indotto dipolo istantaneo-dipolo indotto (forze di dispersione di London) L’appaiamento obbligatorio di A con T e di C con G rende i due filamenti fra loro complementari: se uno di essi presenta la sequenza C-T-A-C-G, l’altro non potrà che avere la sequenza complementare G-A-T-G-C. Un filamento costituisce quindi una sorta di stampo per l’altro.

Stato di ossidazione degli elementi Nel legame cambia la distribuzione elettronica. Come sono ripartiti tra i vari atomi gli elettroni impegnati nei legami? Struttura ionica la ripartizione è netta! NaCl: Na+ +1 Cl- -1 Struttura covalente omeopolare: no separazione di carica eteropolare: separazione di carica

Numero di ossidazione Carica netta di uno ione (legame ionico) Carica che avrebbe l’elemento se il legame fosse ionico n.o. max: gruppo di appartenenza (n.max di e- che può donare) n.o. min: n.max di e- che può acquistare per completare l’ottetto Anche n.o. frazionari Regole 1. Ogni atomo nello stato elementare: n.o. = 0 2. Ogni ione monoatomico: n.o. = carica 3. idrogeno: n.o. = +1 sempre tranne negli idruri (-1) 4. ossigeno: n.o. = -2 sempre tranne nei perossidi (-1) 5. Aggregato poliatomico: la somma dei n.o. deve essere uguale alla carica complessiva dell’aggregato, o uguale a zero se l’aggregato è neutro. 6. Più atomi uguali nella stessa molecola: n.o. medio

Bilanciamento reazioni redox Nelle reazioni si ha spesso un riarrangiamento degli atomi e quindi una ridistribuzione degli elettroni di legame tra gli atomi ↓ cambiamento n.o. degli elementi X + e- → X- n.o. di X da 0 a -1 riduzione Y → Y+ + e- n.o. di Y da 0 a +1 ossidazione X / X- e Y / Y+ sono due coppie redox Nella reazione X + Y → X- + Y+ si ha un trasferimento di elettroni da Y (che si ossida) ad X (che si riduce) (anche se il trasferimento non è netto!)