Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi

Slides:



Advertisements
Presentazioni simili
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi Albero ricoprente di costo minimo Lezione n°12.
Advertisements

Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi Lezione n°10.
Prof.ssa Rossella Petreschi Lezione del 3 /12/ 2012 del Corso di Algoritmi e Strutture Dati Riferimenti: Capitolo 3 del testo Nishizeki,Chiba “Planar graphs:theory.
Prof.ssa Rossella Petreschi Lezione del 1 /12/ 2011 del Corso di Algoritmi e Strutture Dati Riferimenti: capitolo 17 del testo M.H.Alsuwaiyel “Algorithms:
Prof.ssa Rossella Petreschi Lezione del 3/12/2013 del Corso di Algoritmica GRAFI e PLANARITA’ Lezione n°15.
Prof.ssa Rossella Petreschi Lezione del 29 /10/2014 del Corso di Algoritmica Lezione n°8.
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi Somme prefisse Lezione n°2.
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Lezione n°10 Prof.ssa Rossella Petreschi
Cammini minimi in grafi:
Branch and Bound Lezione n°19 Prof.ssa Rossella Petreschi
GRAFI e PLANARITA’ Lezione n°19 Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Branch and Bound Lezione n°14 Prof.ssa Rossella Petreschi
Reti, flussi e tagli Lezione n°11
Analisi di sequenze di operazioni Union-Find
Lezione n°9 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Lezione n°7 Prof.ssa Rossella Petreschi
La funzione Path e le forme a cespuglio
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Lezione n°17 Prof.ssa Rossella Petreschi
Lezione n°15 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Complessità ammortizzata degli algoritmi Union Find
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Lezione n°14 Reti di flusso Prof.ssa Rossella Petreschi
La gestione degli insiemi disgiunti
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Lezione n°16 Abbinamento Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi e Strutture Dati
Usi (meno scontati) della visita DFS
Lezione n°4 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Paths, tree and flowers Lezione n°14
K4 è planare? E K3,3 e K5 sono planari? Sì!
per rappresentare grafi
Lezione n°11 Prof.ssa Rossella Petreschi
Lezione n°12 Prof.ssa Rossella Petreschi
Algoritmi e Strutture Dati
ABBINAMENTO Lezione n°13
Algoritmi e Strutture Dati
Algoritmi per il flusso nelle reti
Algoritmi per il flusso nelle reti
Lezione n°6 Prof.ssa Rossella Petreschi
Branch and Bound Lezione n°18 Prof.ssa Rossella Petreschi
Cammini di costo minimo su un grafo pesato
Schema generale, visita in ampiezza e profondità.
Algoritmi e Strutture Dati
Usi (meno scontati) della visita DFS
Lezione n°14 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Automi e stringhe Lezione n°24 Prof.ssa Rossella Petreschi
Estensione di strutture dati e
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a. 2010/11
Alberi di ricerca Lezione n°4
Cammini minimi in grafi:
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Grafi e problem solving
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Il problema del flusso nelle reti
Unione per ranghi compressi
Transcript della presentazione:

Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi Il problema dell’abbinamento Lezione n°11 Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi ASD a.a.2010/2011- Lezione 11

L’abbinamento Abbinamento (accoppiamento) in un grafo connesso non orientato (e privo di loop) è un qualsiasi insieme M di archi a due a due non incidenti. La cardinalità di M è la cardinalità dell’abbinamento. Un nodo si dice saturo (esposto) se è (non è) estremo di un qualche arco in M. M è un abbinamento massimale se non è sottoinsieme proprio di alcun abbinamento in G. M è un abbinamento massimo se non esiste un altro abbinamento in G con cardinalità maggiore di quella di M. M è un abbinamento perfetto se non lascia alcun nodo esposto. ASD a.a.2010/2011- Lezione 11

Proprietà dell’abbinamento Grafi qualunque G ( V, E ), V = n Ogni abbinamento massimo è massimale Ogni abbinamento perfetto è massimo Un abbinamento massimo non è detto sia perfetto In un grafo possono esistere distinti abbinamenti perfetti Un abbinamento può avere al più n/2 archi Un abbinamento è perfetto se e solo se ha n/2 archi Se un grafo ha un abbinamento perfetto, allora ha un numero pari di nodi Grafi bipartiti G(XUY,E) La cardinalità di un abbinamento massimo è al più il minimo fra la cardinalità di X e quella di Y G non può avere un abbinamento perfetto se X ≠ Y ASD a.a.2010/2011- Lezione 11

Cammini alternanti/aumentanti Dato G (V,E) ed M abbinamento su G si definisce p: cammino M-alternante un cammino che alterna archi in M con archi in E/M p: cammino M-aumentante un cammino M-alternante che inizia e termina con un nodo esposto ASD a.a.2010/2011- Lezione 11

L’Operatore XOR M1 , M2 abbinamenti,  M1  = r,  M2  = s, s > r p: cammino M1-aumentante si definisce M1  M2 = (M1M2) - (M1M2) = (M1-M2)  (M2 -M1) vale M1  p è un abbinamento di dimensione r+1 M1 è massimo sess nel grafo non esistono cammini M1- aumentanti (Petersen1891, Berge 1957, Norman-Rabin1959) M1  M2 contiene almeno k=s-r cammini M1-aumentanti a nodi disgiunti prova Le componenti connesse di G(V, M1  M2 ) possono essere vertici isolati,cicli pari o cammini, sia pari che dispari. Cicli e cammini pari non sono M1-aumentanti. I restanti k cammini dispari sono M1-aumentanti. ASD a.a.2010/2011- Lezione 11

Sui grafi bipartiti Teorema del matrimonio (Jacobi 1890, Frobenius 1917, Hall 1935) G(XUY, E) ha un abbinamento perfetto sse X = Y S ≤ N(S)  per ogni S in X Teorema di Konig-Egervary (Konig 1930, Egervary1931) In ogni grafo bipartito la cardinalità massima di un abbinamento è uguale alla cardinalità minima di un ricoprimento (insieme di nodi che copre tutti gli archi del grafo) ASD a.a.2010/2011- Lezione 11

Albero ungherese (coniato da Kuhn nel 1955 in onore di Konig e Egervary ) G(XUY,E), X+Y=n, E=m, M’ abbinamento arbitrario in G Sia r un vertice esposto in X. T, albero alternante radicato in r (ovvero albero in cui ogni cammino dalla radice ad una foglia sia alternante) si costruisce nella seguente maniera: a partire da r, si aggiunga a T un arco non in M’, sia (r,y). Per ogni z adiacente ad y, si aggiunga l’arco (y,z) in M’(se esiste). Si ripeta il procedimento finchè: o si incontra un nodo z esposto; e quindi un cammino aumentante o l’albero non può più crescere; in tal caso si ha un albero ungherese. NOTE In un albero ungherese l’unico nodo esposto è r nessun cambiamento all’interno di un albero ungherese può cambiare la cardinalità dell’abbinamento. ASD a.a.2010/2011- Lezione 11

Abbinamento in grafi bipartiti Input: G(XUY,E), X+Y=n, E=m, M’ abbinamento arbitrario in G (M può essere l’insieme vuoto) Output: M massimo abbinamento Algoritmo: finchè esistono due vertici esposti, uno in X e uno in Y, costruisci un albero alternante T, radicato in r (in X), tramite visita in ampiezza; se T è ungherese, rimuovi T da G altrimenti M = M  p, dove p è il cammino aumentante trovato Complessità: O(nm) ≤ O(n3) O(m) costruzione di un albero alternante con visita in ampiezza; al più O(n) alberi DA RICORDARE un grafo bipartito non contiene cicli dispari ASD a.a.2010/2011- Lezione 11

La contrazione del germoglio (Paths,trees and flowers Edmonds,1965) Germoglio: ciclo dispari costituito da una alternanza di spigoli appartenenti e non appartenenti all’abbinamento. In un germoglio si individua la base e lo stelo. Edmonds’ idea: ogni germoglio va compresso in un supernodo Teorema: Sia G(V,E) un grafo non orientato e sia G’ il grafo ottenuto da G comprimendo un germoglio in un supernodo. G’ contiene un cammino aumentane sse G lo contiene ASD a.a.2010/2011- Lezione 11 9

Abbinamento in grafi qualunque Input: G(V,E), V=n, E=m, M’ abbinamento arbitrario in G (M può essere l’insieme vuoto) Output: M massimo abbinamento Algoritmo: finchè esistono due vertici esposti, x e y, si costruisca un cammino alternante T, se trovi un germoglio, contrailo e prosegui l’algoritmo su G’ se trovi p, cammino aumentante, incrementa M : M = M  p, se l’abbinamento è stato trovato su G’, decontrai i germogli e produci M su G Complessità: O(nm) ≤ O(n3) ASD a.a.2010/2011- Lezione 11 10

Algoritmi di abbinamento massimo Grafo bipartito: O(n3/2(m/logn)1/2) Alt, Blum, Mehlhorn, Paul 1991 O(n1/2(m+n) (log(1 + n2/m))/logn) Feder, Motwani 1991 Grafo qualunque O(mn1/2) Micali, Vazirani 1980 ASD a.a.2010/2011- Lezione 11 11

Applicazioni Grafo bipartito In una azienda n nuovi assunti da assegnare ad n differenti lavori Scegliere far i componenti di una squadra di nuoto il team giusto da portare ad una gara in modo da poter partecipare a tutte le discipline Grafo qualunque Scegliere opportunamente coppie di persone a cui far condividere una stanza d’albergo. Una compagnia aerea multiculturale deve scegliere i due piloti dello stesso aereo in modo che abbiano lo stesso tipo di addestramento e parlino una lingua comune e poi abbinamenti di strutture chimiche, scheduling parallelo di differenti lavori su diverse macchine, assegnamento di turni in una fabbrica………. ASD a.a.2010/2011- Lezione 11 12