Il cilindro DEFINIZIONE. Si dice cilindro il solido generato dalla rotazione completa di un rettangolo attorno ad uno dei suoi lati. Analizzando la figura.

Slides:



Advertisements
Presentazioni simili
Conosci la differenza tra circonferenza e cerchio?
Advertisements

1 I triangoli Definizione
Teorema di Pitagora Con gli angoli di 45°.
Equivalenza Due figure A e B si dicono equiestese o equivalenti se hanno la stessa estensione. In simboli si scrive A B Date due figure A e B la cui.
Elementi di Matematica
Considera un quadrato inscritto in una circonferenza di raggio r
I poliedri.
I solidi.
I SOLIDI DI ROTAZIONE Cilindro e cono.
Il cilindro Il cilindro è un solido ottenuto dalla rotazione completa di un rettangolo attorno ad un suo lato altezza generatrice raggio.
Il cilindro Il cilindro è un solido ottenuto dalla rotazione completa di un rettangolo attorno al suo lato. La retta del lato attorno a cui ruota il rettangolo.
Solidi di rotazione.
I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune.
TEOREMA. In un triangolo rettangolo il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti. L’enunciato del teorema.
Triennio 1Preparazione giochi di Archimede - Triennio.
Il cilindro DEFINIZIONE. Si dice cilindro il solido generato dalla rotazione completa di un rettangolo attorno ad uno dei suoi lati. Analizzando la figura.
PRESENTAZIONE DI GEOMETRIA SOLIDA
Le trasformazioni isometriche
I TRIANGOLI Ma che cos’ è un triangolo ??? UN TRIANGOLO È UN POLIGONO CHE HA TRE LATI E TRE ANGOLI. IL TRIANGOLO È UNA FIGURA RIGIDA E INDEFORMABILE.
Parallelismo e perpendicolarità nel piano Due rette r e s si dicono perpendicolari se, incontrandosi, formano quattro angoli fra loro congruenti; ciascuno.
La goniometria si occupa della misura degli angoli e delle relative funzioni. La trigonometria studia i procedimenti di calcolo che permettono di determinare.
× = × ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Definizione Dati un punto O del piano α e un numero reale k ≠ 0, si dice omotetia di centro O e rapporto k la trasformazione del piano in sé che associa.
GEOMETRIA PIANA APPROFONDIMENTI.
Poligoni inscritti e circoscritti
CIRCONFERENZA E CERCHIO
Similitudine e omotetia
Il cono.
Il cilindro.
I TRIANGOLI.
I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune.
La circonferenza, il cerchio, e
Prof.ssa Carolina Sementa
LA GEOMETRIA LA GEOMETRIA
Formule generali per il calcolo di superficie e volume di solidi a 2 basi by iprof.
Prof.ssa Giovanna Scicchitano
Piramide.
Bergamini, Trifone, Barozzi – La matematica del triennio
1 La lunghezza della circonferenza
IL CERCHIO.
La circonferenza e il cerchio
I poligoni inscritti e circoscritti
Il cono.
Formazione docenti – LIM
L'area delle figure piane
COSTRUZIONI GEOMETRICHE ELEMENTARI 1
Piramide.
I solidi.
PROF:LIZZIO GRAZIELLA PAPA
Cerchio e Circonferenza
Prof.ssa Carolina Sementa
Formazione docenti – LIM
Il cerchio.
I triangoli e le loro proprietà
Circonferenza e cerchio
I Triangoli Lia Drei Prof. PAOLO FAGNONI.
Le trasformazioni isometriche
L’area delle figure piane
La misura della circonferenza e del cerchio
Le caratteristiche generali di un quadrilatero
Il teorema di Pitagora.
La circonferenza e il cerchio
2. I TRIANGOLI A cura di Mimmo CORRADO.
L'area delle figure piane
I Triangoli Lia Drei Prof. PAOLO FAGNONI.
L’enunciato del teorema di Pitagora
Il cilindro.
Geometria piana euclidea Itcs “Pacini” di Pistoia
CILINDRO.
Transcript della presentazione:

Il cilindro DEFINIZIONE. Si dice cilindro il solido generato dalla rotazione completa di un rettangolo attorno ad uno dei suoi lati. Analizzando la figura rileviamo che: il lato AD attorno al quale ruota il rettangolo rappresenta l’asse di rotazione e costituisce l’altezza del cilindro; il lato BC, opposto a quello di rotazione, genera una superficie detta superficie laterale del cilindro; la rotazione dei lati AB e CD genera due cerchi che costituiscono le due superfici di base del cilindro (o semplicemente basi); tali lati rappresentano i raggi delle basi. I solidi di rotazione

L’area delle superfici del cilindro REGOLA. L’area della superficie laterale del cilindro è data dal prodotto della lunghezza della circonferenza di base per la misura dell’altezza. Ricordando che avremo: I solidi di rotazione

L’area delle superfici del cilindro REGOLA. L’area della superficie totale del cilindro è data dalla somma dell’area della superficie laterale con l’area delle due basi. In simboli: Da questa formula possiamo ricavare le due formule inverse: I solidi di rotazione

Il volume del cilindro REGOLA. Il volume del cilindro è dato dal prodotto dell’area del cerchio di base per la misura dell’altezza. In simboli: Essendo possiamo scrivere: Da questa formula possiamo ricavare le due formule inverse: I solidi di rotazione

Il cono DEFINIZIONE. Si dice cono il solido generato dalla rotazione completa di un triangolo rettangolo attorno ad uno dei suoi cateti. Analizzando la figura rileviamo che: il cateto VO attorno al quale ruota il triangolo è l’asse di rotazione e rappresenta l’altezza del cono; l’ipotenusa VA genera una superficie detta superficie laterale del cono e rappresenta l’apotema del cono; l’altro cateto OA genera un cerchio che costituisce la superficie di base del cono e rappresenta il raggio del cono. I solidi di rotazione

L’area delle superfici del cono Per ottenere lo sviluppo del cono, bisogna tagliarlo lungo l’apotema e la circonferenza di base. REGOLA. L’area della superficie laterale del cono è data dal prodotto della lunghezza della semicirconferenza di base per la misura dell’apotema. In simboli: Da questa formula possiamo ricavare le due formule inverse: I solidi di rotazione

L’area delle superfici del cono REGOLA. L’area della superficie totale del cono è data dalla somma dell’area della superficie laterale con l’area di base. In simboli: Da questa formula possiamo ricavare le due formule inverse: I solidi di rotazione

Il volume del cono PROPRIETÀ. Un cono è equivalente ad un terzo di un cilindro avente il raggio di base e l’altezza congruenti. REGOLA. Il volume del cono è dato dalla terza parte del prodotto dell’area del cerchio di base per la misura dell’altezza. In simboli: Essendo possiamo anche scrivere: Da quest’ultima formula possiamo ricavare le due formule inverse: I solidi di rotazione

La sfera DEFINIZIONE. Si dice sfera il solido generato dalla rotazione completa di un semicerchio attorno al suo diametro. Il raggio e il centro del semicerchio sono anche il raggio e il centro della sfera. DEFINIZIONE. Si dice superficie sferica l’insieme di tutti i punti dello spazio che hanno la stessa distanza da un punto fisso detto centro. I solidi di rotazione

Le posizioni reciproche di un piano e una sfera Un piano rispetto a una sfera di centro O e raggio r può essere: Esterno se non ha alcun punto in comune con la sfera. Tangente se ha un solo punto in comune con la sfera. Secante se l’intersezione tra piano e sfera è costituita da un cerchio. Se il piano secante α passa per il centro della sfera esso viene detto piano diametrale e la sua intersezione con la sfera è un cerchio cha ha lo stesso centro O e lo stesso raggio r della sfera e viene denominato cerchio massimo. I solidi di rotazione

L’area della superficie sferica TEOREMA. L’area della superficie sferica è uguale all’area della superficie laterale del cilindro equilatero ad essa circoscritto. Poiché l’area della superficie laterale di un cilindro equilatero è data dalla formula Al = 4  π  r , possiamo enunciare la seguente REGOLA. L’area della superficie sferica è uguale a quattro volte l’area di un suo cerchio massimo. In simboli: Da questa formula possiamo ricavare la formula inversa: I solidi di rotazione

Il volume della sfera TEOREMA. La sfera è equivalente ad un cono avente l’altezza congruente al raggio della sfera e il raggio di base congruente al diametro della sfera. Vale quindi la seguente: REGOLA. Il volume della sfera è uguale al prodotto dei di π per il cubo della misura del raggio. In simboli: Da questa formula possiamo ricavare la formula inversa: I solidi di rotazione

Altri solidi di rotazione Rotazione completa di un triangolo rettangolo attorno all’ipotenusa Rotazione completa di un triangolo isoscele attorno alla base Rotazione completa di un triangolo ottusangolo attorno al lato adiacente all’angolo ottuso I solidi di rotazione

Altri solidi di rotazione Rotazione completa di un trapezio rettangolo attorno alla base maggiore Rotazione completa di un trapezio rettangolo attorno alla base minore I solidi di rotazione

Altri solidi di rotazione Rotazione completa di un trapezio isoscele attorno alla base maggiore Rotazione completa di un trapezio isoscele attorno alla base minore I solidi di rotazione