Rino Romani rino.romani@isnova.net Cogenerazione Rino Romani rino.romani@isnova.net
La cogenerazione (fonte ARERA)
La cogenerazione (fonte ARERA)
La cogenerazione (fonte ARERA)
La cogenerazione (fonte MiSE) L'energia elettrica prodotta dalle unità di cogenerazione oggetto dello studio è stata classificata in: energia elettrica “Lorda": totale energia elettrica prodotta dalle unità di cogenerazione; energia elettrica "Alto rendimento": energia elettrica che rispetta i criteri dell'Allegato II della Direttiva 2012/27/UE; energia elettrica "Basso rendimento": energia elettrica pari alla differenza tra l’energia elettrica “Lorda" e l’energia elettrica "Alto rendimento" (energia elettrica prodotta da unità che non rispettano l’Allegato II). Figura 16 - Energia elettrica a Basso rendimento e Alto rendimento. Figura 17 - Energia elettrica a Basso rendimento e ad Alto rendimento.
La cogenerazione (fonte MiSE) La Figura 1 illustra il contributo di ciascuna delle tecnologie di cogenerazione impiegate nella produzione combinata di energia elettrica ed energia termica, in termini di numero di unità, capacità totale e media di generazione elettrica Dati sulla produzione nazionale da cogenerazione anno 2016
La cogenerazione (fonte MiSE) La Figura illustra il contributo di ciascuna delle tecnologie di cogenerazione impiegate nella produzione combinata di energia elettrica ed energia termica, in termini produzione totale di energia elettrica lorda e di calore utile, rapporto medio tra l’energia elettrica lorda e l’energia termica.
La cogenerazione (fonte MiSE) Le prestazioni rilevate per le turbine a gas a ciclo combinato evidenziano un rapporto energia elettrica/calore elevato, confermando la pratica diffusa da parte degli operatori di installare tale tecnologia presso utenze caratterizzate da una ridotta richiesta termica rispetto al fabbisogno elettrico oppure, nel caso in cui l’obiettivo principale sia la produzione elettrica per l’esportazione verso la rete, con possibilità di ottimizzare l’efficienza sfruttando utenze termiche localizzate presso l’area predisposta per la produzione di energia elettrica. Ciò si traduce in un rendimento termico inferiore a quello conseguito dalle altre tecnologie e inferiore, di due punti percentuali rispetto al 2015; i rendimenti termici conseguiti da tutte le altre tecnologie evidenziano l’utilizzo di queste ultime principalmente al servizio di utenze con elevata richiesta termica rispetto ai fabbisogni elettrici. La Figura illustra le prestazioni energetiche di ciascuna delle tecnologie di cogenerazione, in particolare evidenziando i rendimenti medi elettrici, termici e di primo principio (ηI principio) medi registrati per la produzione 2016.
La cogenerazione (fonte MiSE)
La cogenerazione (fonte MiSE)
La cogenerazione (fonte MiSE)
La cogenerazione (fonte MiSE)
La cogenerazione Per cogenerazione si intende produrre contemporaneamente energia elettrica e calore . Il ricorso alla cogenerazione produce a volte ritorni economici rilevanti per l’utenza finale, ma spesso ciò non avviene. La cogenerazione sottende un impianto complesso e la convenienza economica è fortemente dipendente dal profilo energetico dell’utenza finale. In fase di proposta della cogenerazione assume rilievo prima il profilo energetico dell’utenza, dopo la scelta della tecnologia e infine il dimensionamento dell’impianto
La cogenerazione La produzione combinata di energia elettrica e calore trova applicazione sia in ambito industriale, sia in ambito civile In ambito industriale il calore viene utilizzato nella forma di vapore o di altri fluidi termovettori (acqua calda, olio diatermico, …) o nella forma di aria calda. In ambito civile per riscaldamento urbano tramite reti di teleriscaldamento nonchè per il raffreddamento tramite sistemi ad assorbimento
La cogenerazione Le utenze privilegiate per la cogenerazione sono quelle caratterizzate da una domanda nel tempo piuttosto costante di energia termica ed elettrica: Industrie alimentari, cartiere, chimiche, petrolchimiche, ….. In ambito civile/terziario: ospedali e case di cura, piscine e centri sportivi, centri commerciali, ……
La cogenerazione. Quadro Normativo Direttiva 2004/8/CE (abrogata dalla direttiva 2012/27/UE). Introduce: a) la definizione di energia elettrica qualificabile come cogenerazione, a partire dalla domanda di calore utile; b) la definizione di cogenerazione ad alto rendimento. DLgs. 8 febbraio 2007, n.20. Per definire la CAR utilizza il criterio basato sull’indice PES (Primary Energy Saving) che rappresenta il risparmio di energia primaria che la cogenerazione permette di ottenere rispetto alla produzione separata.
La cogenerazione. Quadro Normativo DLgs. 3 marzo 2011, n 28 Il comma 4 dell’art. 29 «Certificati Bianchi» prevede un regime di sostegno per gli impianti cogenerativi entrati in esercizio dopo il 1° aprile 1999 e prima dell’entrata in vigore del DLgs. 8 febbraio 2007, n.20 Decreto MiSE del 4 agosto 2011. Esplicita le metodologie e i criteri da utilizzare per la valutazione del funzionamento di una unità come CAR
La cogenerazione. Quadro Normativo Decreto MiSE 5 settembre 2011 Stabilisce le condizioni e le procedure per l’accesso della cogenerazione al regime di sostegno legato al meccanismo dei Certificati Bianchi. Linee guida per l’applicazione del decreto 5 sett. 2011. Sono redatte dal MiSE e hanno lo scopo di esemplificare i metodi di calcolo delle grandezze rilevanti ai fini del riconoscimento CAR e l’accesso al meccanismo dei Certificati Bianchi
La cogenerazione. Quadro Normativo DLgs 4 luglio 2014, n. 102 Attua la direttiva 2012/27/UE e non apporta modifiche rispetto alla normativa in vigore. Regolamante delegato UE 2015/2402 del 12 ottobre 2015. ha rivisto i valori di rendimento di riferimento armonizzati per la produzione separata di energia elettrica e di calore ai fini del calcolo e della verifica dell’indice PES. I nuovi rendimenti, differenziati in funzione della tipologia di combustibile in ingresso all’unità e della data di entrata in esercizio della stessa, sono da applicare a partire dalla produzione dell’anno 2016.
La cogenerazione. Quadro Normativo Decreto MiSE del 4 agosto del 2016 definisce condizioni e modalità per il riconoscimento di una maggiore valorizzazione dell’energia da CAR, ottenuta a seguito della riconversione di esistenti impianti a bioliquidi sostenibili che alimentano siti industriali o artigianali. Decreto MiSE 16 marzo 2017. si applica agli impianti di microcogenerazione ad alto rendimento, così come definiti dal Decreto Legislativo n. 20 del 2007, e agli impianti di microcogenerazione alimentati da fonti rinnovabili. Lo scopo del decreto è di minimizzare l’onere a carico dei produttori e razionalizzare lo scambio di informazioni tra Comuni, gestori di rete e GSE nell’ambito delle attività che comprendono la realizzazione, la connessione e l’esercizio di questa particolare tipologia di impianto
La cogenerazione Produrre simultaneamente energia elettrica e calore comporta che nel caso di inferiori richieste di uno dei due vettori si ha un eccesso di disponibilità dell’altro. Eccesso di disponibilità di energia elettrica: a) vendita alla rete ad un prezzo del kWh inferiore al costo di produzione; b) accumulo in rete da recuperare al momento opportuno, in sede di conguaglio si dovrà riconoscere un onere per il servizio goduto. Eccesso di disponibilità di energia termica: a) riversata in ambiente. Nel caso questa modalità si prolunghi per periodi significativi confermerebbe il sovradimensionamento della sezione termica del cogeneratore (maggiore investimento con diretta influenza sul bilancio economico) ; b accumulo termico. Aumenta la flessibilità dell’impianto ma comporta un aggravio economico. La maggior parte degli impianti di cogenerazione non prevedono l’accumulo termico.
La cogenerazione e la produzione separata
Il principio fisico In un ciclo di potenza c’è sempre una quantità di calore di «scarto» (Q2) che viene restituita all’ambiente a bassa temperatura (T2). Indicando con (L) il lavoro meccanico prodotto si ha: Se si recupera il calore di «scarto» per soddisfare un’utenza, si ha: 𝜂= 𝑸𝟏−𝑸𝟐 𝑸𝟏 = 𝑳 𝑸𝟏 𝜂𝐜𝐨𝐠= 𝑳+𝑸𝟐 𝑸𝟏 > 𝑳 𝑸𝟏
L’Indice elettrico E’ un indice molto usato che evidenzia la produzione di energia elettrica di un impianto di cogenerazione varia tra 0 (per sistemi che generano solo calore) e 1 (per sistemi che generano solo energia elettrica) rappresenta, solo e soltanto, una caratteristica del «motore primo cogenerativo» è il riferimento a cui si ricorre all’atto della scelta e del dimensionamento del cogeneratore Iel= 𝐸𝑒 𝐸𝑡+𝐸𝑒 = 𝜂𝑒 𝜂𝑡+𝜂𝑒
Risparmio di Energia Primaria
Risparmio di Energia Primaria ηRef elettrico ηRef termico 0,4 0,9
Risparmio di Energia Primaria (PES) Il PES (Primary Energy Saving) è un indice introdotto dalla Direttiva 2004/8/EC (recepita dal MiSE con decreto del 5 settembre 2011) sulla base del quale sono calcolati gli incentivi per gli impianti di cogenerazione CHP H𝜂: rendimento termico del cogeneratore, rapporto tra calore utile diviso il combustibile usato per produre il calore utile e l’elettricità da cogenerazione CHP E𝜂: rendimento elettrico del cogeneratore, rapporto tra energia elettrica cogenerata diviso il combustibile usato per produre il calore utile e l’elettricità da cogenerazione Ref H𝜂: rendimento termico di riferimento per la produzione separata di elettricà e calore Ref E𝜂:rendimento elettrico di riferimento per la produzione separata di elettricità e calore Ref H𝜂 e Ref E𝜂 sono valori determinati secondo i parametri indicati nell’allegato V(es. gas naturale 90%) e IV (es. gas naturale 52,5%) del D.M. 5 settembre 2011.
Risparmio di Energia Primaria (PES) Più alto il PES più conveniente è la cogenerazione dal punto di vista delle sfruttamento dell’energia primaria Le unità di cogenerazione per ottenere la qualifica CAR (Cogenerazione ad Alto Rendimento) devono soddisfare le seguenti condizioni
Calcolo dell’incentivo per gli impianti riconosciti CAR L’incentivo è parametrato sulla base dei risparmi di energia tra un’unità di cogenerazione ad alto rendimento (CAR) e un’unità tradizionale con produzione separata di energia elettrica e calore 𝑅𝐼𝑆𝑃= 𝐸𝑒,𝑐ℎ𝑝 𝜂𝑒,𝑟𝑖𝑓 + 𝐸𝑡,𝑐ℎ𝑝 𝜂𝑡,𝑟𝑖𝑓 -𝐸𝑐 𝑹𝑰𝑺𝑷 è il risparmio di energia primaria, espresso in MWh, realizzato dall’unità di cogenerazione. 𝑬𝒆,𝒄𝒉𝒑 è l’energia elettrica, espressa in MWh, prodotta dall’unità di cogenerazione. 𝑬𝒕,𝒄𝒉𝒑 è l’energia termica utile, espressa in MWh, prodotta dall’unità di cogenerazione. 𝜼𝒆,𝒓𝒊𝒇 è il rendimento medio convenzionale del parco di produzione elettrica italiano, assunto pari a 0,46: Tale valore deve essere corretto per le perdite di rete evitate con gli stessi coefficienti e la medesima procedura adottata per il calcolo del PES. La percentuale di energia elettrica autoconsumata da tenere in conto è quella riferita alla produzione totale in regime CAR. 𝜼𝒕,𝒓𝒊𝒇 è il rendimento medio convenzionale del parco di produzione termico italiano, assunto pari a 0,82 nel caso di utilizzo diretto dei gas di scarico; 0,90 nel caso di produzione di vapore / acqua calda; 𝑬𝒄 è l’energia, espressa in MWh, del combustibile utilizzato dall’unità di cogenerazione.
Turbina a vapore Ciclo Rankine La produzione di potenza elettrica con turbine a vapore utilizza impianti basati sul ciclo Rankine che sfrutta il cambiamento di fase dell’acqua o di altri fluidi Il ciclo comprende 5 trasformazioni: una compressione in fase liquida (1-2), un riscaldamento a pressione costante (2-3), un passaggio di stato o evaporazione(3-4), un’espansione in zona bifase (4-5) e un nuovo passaggio di stato o condensazione per riportare il fluido alle condizioni iniziali
Turbina a vapore Gli impianti a vapore hanno un rendimento elettrico in assetto cogenerativo compreso tra il 15% e il 30% e un rendimento termico che può arrivare fino al 60% L’energia termica è messa a disposizione sotto forma di vapore a pressioni anche dell’ordine di decine di bar Negli impianti a vapore è possibile impiegare qualsiasi combustibile Sono impianti adatti ad applicazioni in ciclo combinato e nel settore industriale nelle lavorazioni che richiedono grosse quantità di vapore (es. produzione della carta, ….)
Turbina a vapore
Ciclo Rankyne a fluido Organico (ORC) Sono basati sul ciclo a vapore (ciclo Rankyne) Tecnologia consolidata Il calore viene introdotto per combustione esterna in una caldaia e trasferito al fluido di lavoro tramite uno scambiatore Possibilità di utilizzare calore scaricato da TG e MCI I cicli ORC consentono di superare alcuni limiti imposti dall’utilizzo del vapore d’acqua
Turbina a gas – Ciclo Brayton Il ciclo termodinamico Brayton è composto da quattro trasformazioni principali: compressione, riscaldamento, espansione e raffreddamento I COMPONENTI PRINCIPALI DELL’IMPIANTO SONO: COMPRESSORE COMBUSTORE TURBINA 1-2 COMPRESSIONE ADIABATICA (ISOENTROPICA NEL CICLO IDEALE) 2-3 COMBUSTIONE ISOBARA 3-4 ESPANSIONE ADIABATICA (ISOENTROPICA NEL CICLO IDEALE) 4-1 SCARICO IN ATMOSFERA (= RAFFREDDAMENTO) Il fluido di lavoro è l’aria che compie le prime tre trasformazioni e poi viene scaricata all’estero (dal punto di vista termodinamico lo scarico all’esterno equivale al raffreddamento della trasformazone 4-1 del ciclo chiuso
Turbina a gas – Ciclo Brayton
Turbina a gas a recupero Tecnologia consolidata Bassi pesi e ingombri Tempi di avviamento fermata rapidi Utilizzo di combustibili puliti Alti rendimenti per taglie elevate Disponibilità di taglie da 30 kW a 250 MW
Turbina a gas a recupero Il calore da recuperare è concentrato nei fumi e può essere a alta temperatura (450 °C) Prestazioni della turbina non influenzate dal recupero termico Flessibilità di funzionamento Interessante per applicazioni industriali (vapore alta temperatura, gas caldi)
Turbina a gas a recupero
Turbina a gas
Motori alternativi a combustione interna Vantaggi Taglie da pochi kW a circa 5MW Tecnologia matura e ampiamente diffusa Elevata affidabilità Costi d’investimento contenuti Elevata flessibilità di esercizio Svantaggi Elevati costi di manutenzione (8-25 €/MWh) Elevati valori di emissioni (Nox e CO) Rumorosità
Motori alternativi a combustione interna
Motori alternativi a combustione interna Caso Esempio
Cicli combinati I cicli combinati nascono dall’idea di recuperare il calore contenuto nei fumi scaricati dalle turbine a gas per convertirlo, attraverso un opportuno ciclo termodinamico, in ulteriore potenza elettrica. Il ciclo combinato accoppia una turbina a gas ad un ciclo a vapore d’acqua: il calore entrante in quest’ultimo si ottiene dal recupero termico effettuato sui gas combusti scaricati dalla turbina a gas.
Cicli combinati Nei cicli combinati esiste la possibilità di effettuare una post-combustione dei gas di scarico del turbogas. Ciò avviene con l’utilizzo di bruciatori posti a monte della sezione di scambio termico della caldaia ed è possibile grazie all’elevato contenuto di ossigeno presente nei gas di scarico . La combustione nelle turbine a gas avviene infatti con elevati eccessi di aria per cui nei fumi di scarico il contenuto di ossigeno è compreso tra il 12% e il 16%
Cogenerazione: rendimenti
Cogenerazione: dati caratteristici
Cogenerazione: dati caratteristici
Cogenerazione: Utenza L’utenza deve presentare una contemporanea domanda di elettricità e calore per un certo numero di ore anno Al di sotto di 3500-4000 ore anno il ritorno economico non è scontato Se l’energia termica è utilizzata solo per il riscaldamento degli ambienti la domanda è limitata al solo periodo invernale Nel caso della climatizzazione degli ambienti il numero di ore di funzionamento può essere ampliato avvalendosi di impianti di assorbimento per la produzione di energia frigorifera
Cogenerazione: Curve di carico giornaliere
Cogenerazione: Curve di carico
Cogenerazione: Curva di carico elettrica
Cogenerazione: Curve di carico
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Analisi economica
Cogenerazione: Analisi economica
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni
Cogenerazione: Valutazioni