Teoria cinetica dei Gas

Slides:



Advertisements
Presentazioni simili
Termodinamica Chimica
Advertisements

Teoria Cinetica dei gas
TEORIA CINETICA DEI GAS
TEORIA CINETICA DEI GAS
Lo stato gassoso Il gas perfetto
A differenza degli stati liquido e solido, quando un corpo si trova allo stato gassoso tende a occupare tutto il volume a disposizione GAS Leggi dei gas.
I Padri della Teoria Cinetica
4. La teoria cinetica dei gas
Lo stato gassoso Nello stato gassoso le forze di coesione fra le particelle elementari (atomi o molecole) sono molto deboli, e pertanto esse, a causa della.
Esercizio n. 1 Un gas perfetto è costituito da atomi di massa molare M = 50 g/mol e le cui molecole hanno velocità quadratica media uguale a 380 m/s.
Slides Assunzione dei vari stati della materia Quali sono i fattori fisici e chimici che determinano l’assunzione da parte di una sostanza.
DN rappresenta il numero di molecole che hanno modulo della velocita’ compreso tra v e v+dV ossia f(v) = dN/dv f(v)/ N 0 e’ una funzione normalizzata all’unita’
1 Termodinamica CaloreCalore Liceo “FERMI” Canosa Prof. Fabrizio METTA.
Energia. Cos’è l’energia L’energia è una proprietà che associamo agli oggetti o sistemi che fa sì che in un sistema si possano produrre dei cambiamenti:
TEORIA DELLA RELATIVITÀ. La relatività e suddivisa in : ristretta e generale. La relatività ristretta riguarda i sistemi inerziali,cioè i sistemi in quiete.
Definizione Sistemi isolati Teorema degli impulsi Moto di un razzo
Cinetica chimica La termodinamica ci permette di predire se una reazione è spontanea o non è spontanea oppure se è all’equilibrio. Non da informazione.
TEORIA DELLA RELATIVITÀ
Scattering multiplo Una particella carica che attraversa un mezzo è deflessa attraverso tanti piccoli processi di scattering. Il maggiore contributo a.
Lo stato liquido gas liquido solido Perfetto disordine Perfetto ordine
Lezioni “LINCEI per la Scuola” Teoria cinetica dei gas
Le idee della chimica Seconda edizione
I gas, i liquidi e i solidi
Definizione di lavoro Energia potenziale Potenza
Attrito Nel contatto tra due corpi c’è sempre l’attrito.
I Padri della Teoria Cinetica
LO STATO GASSOSO Le particelle che costituiscono un sistema allo stato gassoso hanno Ecin >> Epot di interazione: occupano tutto lo spazio a loro disposizione.
I GAS.
Lo Stato Gassoso.
La velocità delle reazioni chimiche
Le molecole.
FLUIDO = LIQUIDO O AERIFORME
EQUILIBRIO CHIMICO IN SISTEMI OMOGENEI
I gas sono caratterizzati da quattro proprietà:
LEGGI DEI GAS Gas sono sostanze sprovviste di forma e volume proprio
5 CAPITOLO La mole Indice 1 La mole: unità di quantità di sostanza
Proprietà mezzi porosi/catalizzatori
MOD. 1: Grandezze e misure
Le idee della chimica Seconda edizione
Convezione.
Avviare la presentazione col tasto “Invio”
Copertina 1.
5 CAPITOLO La mole Indice 1 La mole: unità di quantità di sostanza
I gas, i liquidi e i solidi
Termodinamica classica:
Primo principio della termodinamica
Magnetostatica 2 Legge di Biot-Savart Prima formula di Laplace
Capitolo 5 I gas e la teoria cinetica dei gas.
Teoria Cinetica dei gas
Grandezze Fisiche da: molte grandezze fisiche sono note in quanto di uso quotidiano: lunghezza tempo.
Valitutti, Tifi, Gentile
Mario Rippa La chimica di Rippa primo biennio.
PROCEDURA per la misura e la relativa stima
Urti urto: evento isolato nel quale una forza relativamente intensa +
Sandro Barbone Luigi Altavilla
- velocità dell’auto v = 80 km/h;
5 CAPITOLO La mole Indice 1 La mole: unità di quantità di sostanza
Capitolo 15 Cinetica chimica: velocità e meccanismi delle reazioni chimiche.
Stati di aggregazione dal microscopico della materia al macroscopico:
5 CAPITOLO La mole Indice 1 La mole: unità di quantità di sostanza
Un'onda è una perturbazione che si
1.
Principio zero Trasformazioni termodinamiche Lavoro termodinamico
1.
Capitolo 6 Le leggi dei gas 1. Lo studio dei gas nella storia
Cariche in movimento legge di Ohm Circuiti in DC
Flusso del campo elettrico e teorema di Gauss
Gli stati di aggregazione
Transcript della presentazione:

Teoria cinetica dei Gas Gas Ideali Velocità quadratica media Termodinamica dei gas ideali

Dalla meccanica alla termodinamica In Meccanica: lo stato di una particella è definito quando siano note, posizione (x, y, z) e velocità (vx, vy, vz), quindi 6 diverse variabili per ogni punto in moto. In termodinamica: il concetto di stato deve essere ridefinito. I sistemi termodinamici, generalmente costituiti da un gran numero di particelle, tipicamente N (numero di Avogadro, ~1023), non sarebbe possibile conoscere 6N variabili. In Termodinamica non si può parlare più di determinismo della fisica particellare. Lo studio delle proprietà collettive di un “grand ensemble” richiede qualche riflessione. Le proprietà di un insieme numeroso di particelle non sono la semplice somma delle proprietà delle singole particelle. Per comprendere le relazioni fra la fisica di una singola particella e la fisica dei sistemi collettivi dovremo conoscere un po’ di statistica

Definizione di Gas Perfetto Per avere un gas perfetto si devono soddisfare le seguenti condizioni: Disporre di un gran numero di particelle (Grand Ensemble) Le molecole del gas devono essere puntiformi ed identiche tra loro (non devono avere un volume proprio); Le molecole si devono muovere in modo totalente caotico (tutte le direzioni devono essere equiprobabili); Le molecole devono interagire tra loro e con le pareti del recipiente mediante urti perfettamente elastici (non vi deve essere dispersione di energia durante gli urti); Le molecole di un gas perfetto devono obedire solo alle leggi di Newton (le traiettorie dopo ogni urto devono essere rettiline).

Gas Ideali Si può osservare che qualunque tipo di gas, confinato in un recipiente a bassa densità, segue la legge dei gas perfetti: pV = nRT. n è il numero di moli R = 8,31 [J/mol K] costante dei gas L’equazione di stato dei gas si può esprimere anche in funzione del numero di molecole N e diventa: pV = NkT con k = R/NA ed NA= 6,02 x1023(Numero di Avogadro). L’importanza dell’equazione dei gas ideali sta nella sua semplicità e nel fatto che per basse densità è indipendente dalla specie atomica. L’aria che respiriamo soddisfa le condizioni dei gas perfetti.

Pressione di un gas perfetto La variazione della quantità di moto lungo l’asse x è: Dpx = (-mvx) – (mvx) = -2mvx il tempo necessario per andare e tornare fra due pareti opposte, è 2L = D tvx quindi Dt = 2L/vx la forza trasferita sulla parete è: Questa è la forza impressa da una particella su una parete di lato L. (ATTENZIONE: P rappresenta la pressione e la lettera px la quantità di moto). n numero di particelle, vx2 velocità quadratica media nella direzione x. A causa del moto caotico, la velocità quadratica media è 1/3 di vx P = 1/3 (nM/V) v2qm

Velocità quadratica media dalla formula p = (nMv2qm)/3V pV = nMv2qm/3 si vede che il prodotto pV, dipende dalla velocità v delle singole particelle e ricordando l’equazione di stato dei gas perfetti si avrà: La velocità quadratica media è molto alta e dipende: dalla radice della temperatura, espressa in Kelvin, e dall’inverso della massa molare. Domanda: Perché, se la velocità molecolare a temperatura ambiente è così alta, il tempo necessario a sentire l’odore di un fiala di profumo è di qualche minuto?

Cammino libero medio Come si ricava questa formula? Il camino fra due urti successivi è il cammino libero. La somma dei cammini divisa per il numero delle collisioni da il cammino libero medio che risulta essere: d = diametro della particella V = volume del contenitore N = numero di Avogadro Al livello del mare l’aria ha un cammino libero medio di 0,1mm. A 100 km l = 16 cm. A 300 km l = 20 km. Come si ricava questa formula?

Spiegazione cammino libero medio Nel tempo Dt una particella percorrerà una distanza pari vDt (dove v è la velocità presunta, velocità di Maxwell) in un cilindro di sezione pd2. Il volume del cilindro è (pd2)(vDt) Il numero delle collisioni sarà uguale al numero delle particelle nel cilindro. Infatti possiamo supporre che la particella che si muove ha diametro 2d mentre le altre, ipotizzate ferme, siano senza diametro. A cui va aggiunto un fattore 1/√2 per tener conto della differenza fra la velocità vm media su tutto il contenitore e la velocità relativa alle altre particelle vrel = √2 vm Distanza percorsa Volume del cilindro

Energia cinetica Con il solito modello, l’energia cinetica traslazionale media sarà uguale all’energia cinetica di una particella con velocità vqm Sostituendo a vqm il valore funzione della temperatura e della massa: Dove kB è la costante di Boltzmann. Questa formula ci dice che l’energia cinetica media di un gas non dipende dal tipo di atomo o di atomo di cui è costituito i gas, ma solo dalla sua temperatura.

Significato di energia interna L’energia interna Eint di un gas è la somma delle energie cinetiche delle singole particelle e siccome ogni particella ha una Energia cinetica E =(3/2)kBT l’energia totale di un gas dipenderà solo dalla temperatura. Supponendo un gas formato da nNA molecole avremo che L’Energia interna media sarà: n = numero di moli NA = numero di Avogadro Nello stato di gas perfetto, l’Energia interna di un gas Eint dipende solo dalla sua temperatura. Quindi misurare la temperatura è come sapere quanto vale la sua Eint

Esperimento di Stern Nel 1926 il fisico tedesco Otto Stern ebbe l'idea di verificare la teoria di Maxwell. Riscaldando del mercurio in un forno ad alta temperatura, ottenne un fascio di molecole che veniva iniettato in una camera in alto vuoto. Nella camera ruotavano due dischi D1 e D2 dotati di due fenditure e sfasate l'una rispetto all'altra di un angolo noto. Misurando la velocità dei dischi che permettevano ad una molecola di attraversare entrambe le due fenditure si poteva risalire alla velocità delle molecole di mercurio. Quindi, graficando il numero di particelle che raggiungono il rivelatore P in funzione delle velocità dei dischi si ottiene la distribuzione delle velocità delle molecole a temperature diverse, cioè la distribuzione di Maxwell

Velocità di Maxwell La legge della distribuzione delle velocità fu trovata da Maxwell nel 1852 La vm, la vp, e la vqm non coincidono a causa della forma asimmetrica della curva. Il massimo della curva cambia se cambia la temperatura del gas.

Distribuzione delle velocità La curva ci da la probabilità di trovare un certo numero di particelle, P(v) dv, nell’intorno di una definita velocità. L’area sottesa dalla curva è il numero delle particelle costituenti il gas. Pertanto: La velocità media sarà data dalla soluzione: Allo stesso modo si può trovare la media della velocità quadratica La velocità più probabile si trova ponendo uguale a zero la derivata di P(v)