Classi terze L.S.T. Docente: Luciano Canu Corsi di recupero 2012 Classi terze L.S.T. Docente: Luciano Canu
Tavola periodica La tavola periodica degli elementi È una tabella che raccoglie e rappresenta tutti gli elementi conosciuti Rappresenta: ogni elemento è rappresentato con una casella che contiene il suo simbolo Raccoglie: Ordine di numero atomico Per gruppi (somiglianza chimica – configurazione di valenza) Metalli e non metalli Per periodi (mettono l’ultimo elettrone in quel livello)
Struttura elettronica dell’atomo Numero e disposizione degli elettroni all’interno dell’atomo Numero atomico (Z): numero di protoni presenti in quell’elemento Per un atomo neutro, quindi, anche il numero degli elettroni è uguale a Z Non basta conoscere il numero totale degli elettroni Gli elettroni si dispongono secondo schemi piuttosto complessi attorno al nucleo Una versione semplificata dispone gli elettroni secondo livelli energetici principali A ciascun livello è associato un numero intero diverso da 0 chiamato numero quantico principale (n) Ad n è associata l’energia del livello (si può calcolare) Maggiore è n maggiore è l’energia del livello
La Notazione convenzionale Descrive le caratteristiche (composizione) dell’atomo Numero di particelle che compongono l’atomo di quell’elemento AZX A è il numero di massa cioè la somma dei protoni e dei neutroni del nucleo (nucleoni) Il numero dei neutroni si determina dal calcolo n = A-Z Quando si utilizza la notazione convenzionale si vuole indicare un atomo ben preciso denominato isotopo che possiede una massa univoca
Usare la notazione convenzionale 14C questo simbolo non indica l’atomo di carbonio ma solo l’isotopo 14 dell’elemento carbonio Calcolare quanti neutroni sono contenuti nel carbonio-14 n = A-Z = 14-6 = 8 neutroni Definizione di isotopo Atomo che presenta un preciso numero di neutroni 14C Definizione di isotopi Atomi dello stesso elemento che hanno diverse masse (diverso numero di neutroni) 1H 2H (D deuterio) 3H (T tritio) 35Cl 18O
Esercizio Z A p+ e- n0 caric a 17 37 20 13 28 10 15 3+ 16 34 18 2- Completare la tabella utilizzando la tavola periodica e le informazioni inserite simbolo Z A p+ e- n0 caric a 17 37 20 13 28 10 15 3+ 16 34 18 2-
Casi particolari Isotopi con la stessa massa (stesso A) sono detti isobari
Gli elettroni ed i livelli Gli elettroni sono indistinguibili Acquisiscono l’energia del livello in cui si trovano L’energia dei livelli è quantizzata e stabilisce la distanza permessa di ogni livello e quindi di ogni elettrone La teoria della quantizzazione dell’energia afferma che esiste una quantità minima di energia (quanto) tutta l’energia è scambiata in multipli del quanto fondamentale (fotone) Bohr aveva utilizzato la teoria quantica per spiegare la stabilità dei livelli e degli elettroni associati
Livelli elettronici semplificati È possibile rappresentare in modo semplice la configurazione elettronica dei primi 20 elementi della tavola - - - 1+ 2+ 3+ 4+ - - - - - - - - - - - 7+ 5+ 6+ - - - - - - - - - - - - - -
Configurazioni elettroniche stabili Le configurazioni elettroniche caratterizzate da 4 doppietti dello strato di valenza sono stabili (basso valore energetico) Gli elementi che possiedono questa configurazione non hanno bisogno di reagire in alcun modo, la loro inerzia chimica è tale che sono denominati gruppo dei gas nobili o inerti Lo stato gassoso è giustificato dal fatto che sono sostanze monoatomiche e quindi a temperatura ambiente non riescono a condensare Tutto ciò si riassume con la regola dell’ottetto: Tutti gli elementi cercano di completare lo strato di valenza con 8 elettroni poiché è una configurazione stabile
Comportamento degli elementi Comportamento chimico degli elementi è in relazione con la loro configurazione elettronica di valenza Notazione di Lewis è un insieme di regole utilizzato per rappresentare gli elettroni di valenza di un elemento Alcuni elementi (Na) possiedono pochi elettroni di valenza, possono raggiungere l’ottetto in due modi: Acquisire i molti elettroni mancanti (7) - anione Perdere un elettrone mostrando lo strato sottostante completo (1) – catione Questi elementi perdono i pochi elettroni di valenza caricandosi positivamente (metalli)
Comportamento dei non metalli Alcuni elementi (F) possiedono molti elettroni di valenza, possono raggiungere l’ottetto in due modi: Acquisire i pochi elettroni mancanti (1) - anione Perdere molti elettroni mostrando lo strato sottostante completo (7) – catione Questi elementi acquisiscono i pochi elettroni necessari per completare il livello caricandosi negativamente (non-metalli)
Le semireazioni La formazione di un catione da un metallo C Cn+ + ne- Na Na+ + e- Mg Mg2+ + 2e- Al Al3+ + 3e- La formazione di un anione da un metallo A + ne- An- F + e- F- S + 2e- S2- Tutti gli elementi cercano di raggiungere l’isoelettronicità col gas nobile più vicino
Le energie coinvolte L’energia necessaria per strappare uno o più elettroni da un atomo è denominata Energia di Ionizzazione (EI) L’energia necessaria per formare un catione C + EI Cn+ + ne- L’energia liberata da un atomo quando acquista uno o più elettroni è denominata Affinità Elettronica (AE) L’energia fornita dall’atomo quando forma un anione A + ne- An- + AE Sono due proprietà periodiche degli elementi
Periodicità Proprietà periodiche Sono proprietà che variano in modo costante in un certo intervallo (periodo) Un andamento simile si ripete per un simile intervallo (da un periodo all’altro)
Formazione di un composto ionico La cessione e l’acquisizione di elettroni deve essere contemporanea C Cn+ + ne- A + ne- An- Sommando membro a membro C + A + ne- Cn+ + An- + ne- Questa reazione rappresenta la formazione del legame ionico in un composto salino
Caratteristiche dei composti ionici Struttura interna (microscopico) La formula di un composto ionico (NaF) indica solo il rapporto numerico tra cationi e anioni (1:1) Non individua una unità autonoma come nel caso delle molecole La struttura è descritta in termini di interazioni elettrostatiche tra cariche opposte e quindi utilizzando la legge di Coulomb I due ioni si dispongono in modo regolare nelle 3 dimensioni formando un reticolo ordinato (cristallo) di estensione indefinita Prevalgono le forze attrattive La struttura ionica è robusta, i Sali sono solidi altofondenti
Interpretare il legame ionico L’interazione ionica si esercita egualmente in tutte le direzioni Un catione attrae attorno a se il massimo numero di anioni e viceversa La robustezza del reticolo ionico dipende anche dalle cariche ioniche Na+ Cl- Mg2+ O2- Al3+ O2- Conduzione elettrica Sali solidi non conducono, fusi o disciolti conducono la corrente Meccanismo di rottura fragile e con piani di sfaldamento
Elettronegatività È una scala empirica che misura la capacità di un atomo di attirare su di sé gli elettroni di legame (suoi e dell’altro elemento coinvolto) Per determinare il tipo di legame che si forma tra due atomi si deve calcolare la differenza di elettronegatività (DEn) 0,4 1,9 Legame covalente polare Legame prevalentemente ionico Legame covalente puro
H H H Cl H H H Cl Legame covalente Si realizza quando non è possibile trasferire elettroni da un atomo all’altro (bassa o nulla differenza di elettronegatività) Se i due atomi possiedono almeno un elettrone spaiato questi metteranno in compartecipazione ciascuno un elettrone per formare un legame covalente Contemporaneamente raggiungono l’ottetto anche senza avere in totale 16 elettroni di valenza Il legame covalente può formarsi tra atomi diversi o eguali Il legame covalente è fortemente direzionale
Classificazione La molecola di idrogeno (H2) è caratterizzata da un legame covalente puro od omopolare poiché non c’è differenza di elettronegatività La molecola di acido cloridrico (HCl) è caratterizzata da un legame covalente polare poiché c’è differenza di elettronegatività (DEn=3,0- 2,1=0,9) ma non è sufficiente per un vero trasferimento di elettroni Il legame covalente caratterizza e spiega la formazione delle molecole Gruppo definito di atomi, uguali o diversi, legati tra loro in modo da rispettare dimensioni e geometrie precise Individuo chimico
Legami multipli Quando due atomi devono mettere in compartecipazione più di 1 singoletto si può avere la formazione di un legame multiplo O2 si ha formazione di un legame doppio e si raggiunge l’ottetto per i 2 atomi di ossigeno con soli 12 elettroni N2 si ha formazione di un legame triplo e si raggiunge l’ottetto per i 2 atomi di azoto con soli 10 elettroni Si possono avere legami multipli anche tra elementi diversi Per motivi geometrici è impossibile avere un legame quadruplo È possibile avere un atomo che forma 4 legami singoli