Le variabili casuali e la loro distribuzione di probabilità Generalmente, lanciando un dado, si considera il valore numerico della faccia uscita.

Slides:



Advertisements
Presentazioni simili
Elementi di calcolo delle probabilità
Advertisements

La probabilità nei giochi
DISTRIBUZIONE BINOMIALE (cenni) DISTRIBUZIONE NORMALE
Le distribuzioni di probabilità continue
2. Introduzione alla probabilità
Variabili aleatorie discrete e continue
La probabilità.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Variabili casuali a più dimensioni
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni di probabilità
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
STATISTICA A – K (60 ore) Marco Riani
VARIABILI DOPPIE: UN ESEMPIO
VARIABILI ALEATORIE Sono presentate di seguito le nozioni di:
Inferenza statistica per un singolo campione
Le Variabili Casuali Corso di Teoria dell’Inferenza Statistica 1
Corso di biomatematica Lezione 2: Probabilità e distribuzioni di probabilità Davide Grandi.
STATISTICA a.a DISTRIBUZIONE BINOMIALE (cenni)
Funzioni di densità (o di probabilità) congiunte.
Impostazione Assiomatica del Calcolo della Probabilità
Lezione 4 Probabilità.
Nicola Paparella, Università degli Studi, Lecce, aprile 2006 Pedagogia sperimentale Note ed appunti Corso di base / 5
PROBABILITÀ La probabilità è un giudizio che si assegna ad un evento e che si esprime mediante un numero compreso tra 0 e 1 1 Evento con molta probabilità.
La probabilità Schema classico.
Le distribuzioni campionarie
QUALCHE LUCIDO DI RIPASSO… 1. Esperimento casuale ( e. aleatorio) risultato Esperimento condotto sotto leffetto del caso: non è possibile prevederne il.
Teorie e Tecniche di Psicometria
1.PROBABILITÀ A. Federico ENEA; Fondazione Ugo Bordoni Scuola estiva di fonetica forense Soriano al Cimino 17 – 21 settembre 2007.
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
Lancio contemporaneo di due dadi
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
Cap. 15 Caso, probabilità e variabili casuali Cioè gli ingredienti matematici per fare buona inferenza statistica.
è … lo studio delle caratteristiche di regolarità dei fenomeni casuali
Calcolo combinatorio e probabilità
PROBABILITA’ Scienza che studia i fenomeni retti dal caso EVENTO (E): avvenimento che può accadere oppure no 1.certo: se si verifica sempre (es. nel lancio.
Martina Serafini Martina Prandi
IL CAMPIONE.
Esercizi Determinare la probabilità che, lanciando due dadi da gioco, si abbia: A: somma dei risultati maggiore di 10 B: differenza dei punteggi in valore.
Calcolo delle probabilità a cura di Maurizio Brizzi
Appunti conclusioni simulazione lancio dadi
“Teoria e metodi della ricerca sociale e organizzativa”
COVARIANZA: DEFINIZIONE E CALCOLO
Analisi e Gestione del Rischio Lezione 7 Prodotti con pay-off non lineare.
Intervallo di Confidenza Prof. Ing. Carla Raffaelli A.A:
La variabile casuale (v.c.) è un modello matematico in grado di interpretare gli esperimenti casuali. Infatti gli eventi elementari  che compongono lo.
Distribuzioni di probabilità di uso frequente
PROBABILITÀ Corsi Abilitanti Speciali Classe 59A III semestre - 2.
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
La distribuzione campionaria della media
Elaborazione statistica di dati
1 CORSO DI LAUREA IN FINANZA E ASSICURAZIONI Corso integrato di Statistica e Calcolo delle probabilità Calcolo delle probabilità a cura di Maurizio Brizzi.
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
Elementi di teoria delle probabilità
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
16) STATISTICA pag.22. Frequenze frequenza assoluta (o frequenza): numero che esprime quante volte un certo valore compare in una rilevazione statistica.
Elementi di statistica e probabilità Misure Meccaniche e Termiche - Università di Cassino 2 Eventi aleatori e deterministici Un evento aleatorio può.
In alcuni casi gli esiti di un esperimento possono essere considerati numeri naturali in modo naturale. Esempio: lancio di un dado In atri casi si definisce.
La probabilità matematica
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
1 VARIABILI CASUALI. 2 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l’esito.
Statistica : scienza che ha come fine lo studio quantitativo e qualitativo di un “collettivo”. L’etimologia della parola pare derivi dal vocabolo “stato”e.
Introduzione alle distribuzioni di probabilità di Gauss o normale di Bernoulli o binomiale di Poisson o dei casi rari.
Probabilità Definizione di probabilità La definizione di probabilità si basa sul concetto di evento, ovvero sul fatto che un determinato esperimento può.
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Transcript della presentazione:

Le variabili casuali e la loro distribuzione di probabilità Generalmente, lanciando un dado, si considera il valore numerico della faccia uscita e, lanciando una coppia di dadi, interessa il punteggio totale realizzato oppure il valore massimo fra i due ottenuti. Spesso si considera il numero di teste ottenute lanciando un certo numero di volte una moneta. In generale, ai possibili eventi elementari e1, e2,..., en di un dato spazio S sono associati dei valori numerici: più tecnicamente è data una funzione avente come dominio lo spazio S e che a ciascun evento elementare di S associa un numero reale. Funzioni di tal genere sono dette variabili casuali o aleatorie: variabili in quanto suscettibili di assumere valori diversi, casuali poiché il valore da esse assunto dipende dallesito di un esperimento casuale, ossia da quale evento elementare si è realizzato in una data prova.

Una variabile casuale sarà indicata con X. Data una variabile casuale X indichiamo con x1, x2,..., xn linsieme dei suoi possibili valori. Se xi è un valore della variabile casuale X, indichiamo con pi la probabilità che assuma il valore xi, in formula: pi = p(X = xi ). La determinazione di pi è subordinata alla scelta del modello probabilistico relativo allo spazio di eventi relativamente al quale la variabile casuale è definita. Dato lo spazio di probabilità S, pi si calcola semplicemente sommando le probabilità degli eventi elementari ai quali è associato il valore xi di X e si perviene ad unoschema di questo tipo: nella quale si riportano i valori della variabile casuale e le rispettive probabilità, ossia la distribuzione di probabilità della variabile casuale

Definizione della variabile casuale

Definizione del supporto della variabile casuale

Schema di una v. c. discreta

Esempio: costruzione di una v. c. discreta

Valore atteso di una v.c. Così come per le variabili statistiche, anche per le variabili casuali è possibile calcolare alcuni indici di sintesi che ne consentano la descrizione e il confronto. In particolare si fa riferimento al valor medio e alla varianza di una v.c. Si definisce valore atteso (momento primo o valor medio) di una v.c. X, la somma dei valori della X ponderati per le rispettive probabilità. Nel caso di v.c. continue il concetto di somma è da intendersi nel continuo per cui loperatore somma trova suo analogo nellintegrale. Il valore atteso è indicato con il simbolo E().

Varianza di una v.c. Si definisce varianza (momento secondo) di una v.c. X, la somma degli scarti al quadrato tra i valori x e il valor medio, ponderati per le rispettive probabilità. Nel caso di v.c. continue il concetto di somma è da intendersi nel continuo per cui loperatore somma trova suo analogo nellintegrale.

Calcolo della media e della varianza di una v.c.

Esercitazione Un investitore deve scegliere tra due portafogli azionari (A e B) con rendimenti variabili in funzione di quattro possibili situazioni economiche: recessione, stabilità, crescita moderata e crescita elevata. Le probabilità assegnate a ciascuna di queste e i relativi rendimenti dei due portafogli sono i seguenti: Valutare quale portafoglio azionario è mediamente più redditizio e quale dei due portafogli è più variabile. SituazionepAB Recessione0, Stabilit à 0, Crescita moderata 0, Crescita elevata 0,