CARLI-DAMIANI-SALOMONE-TESAURO

Slides:



Advertisements
Presentazioni simili
Linee guida per l’insegnamento della matematica nella scuola media
Advertisements

Le forme dello spazio Caffè Scienza. Associazione formaScienza.
INTERVISTA AD UN GRANDE MATEMATICO
Intervista a un grande matematico:
PROGETTO LAUREE SCIENTIFICHE
Buon Compleanno Eulero!
Il gioco del 15 Il gioco del quindici fu inventato da Sam Loyd piu' di un secolo fa. Lo scopo del gioco e' quello di ordinare le caselle dal numero 1 al.
CONOSCERE CONOSCERSI COMUNICARE
GLI INSIEMI.
…IO E LA GEOMETRIA... REALTA' OPPOSTE O SIMILI?.
Il grande geometra Ilaria Cozzucoli.
Teoria delle stringhe Di Alex Dichirico.
Algoritmi e Strutture Dati con Laboratorio (Modulo II)
Elementi di Matematica
1 Le competenze di base dell'asse matematico Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Liceo Scientifico P.Calamandrei presenta: Il Gioco preferito dagli studenti: un compito in classe… A cura del gruppo che ha partecipato al progetto Lauree.
COS’É LA FISICA? La fisica è lo studio dei FENOMENI NATURALI: è una disciplina molto antica, perché l’uomo ha sempre cercato di comprendere e dominare.
Francesco Cavalera Liceo Scientifico "A.Vallone"
IL TEOREMA DI PITAGORA.
La rivoluzione scientifica
La Vita I sette ponti di Könisberg Curiosità
Cai Lin Lin Michela & Guidetti Emanuela presentano:
Storia del mio rapporto con la geometria
Presentazione a cura della classe III B I.C. VERGA COMISO
La teoria atomica della materia
Secondaria di 1° di San Macario,
ASTUZIE – STRATEGIE - ALGORITMI
Il Rinascimento: secolo dell’arte
Fenomeni di crescita e decrescita
I solidi.
IO E LA GEOMETRIA UN RAPPORTO CON LE FORME, GLI OGGETTI, LO SPAZIO INTORO A ME.
IL TEOREMA DI PITAGORA La prima dimostrazione di questo teorema è stata attribuita al matematico greco Pitagora di Samo ( a. C.). Non si sa, però,
Algoritmi e Strutture Dati
LA PIANIFICAZIONE STRATEGICA COMUNITARIA
La matematica non è un’opinione!
IO E LA GEOMETRIA.
I POLIMINI.
Il mio rapporto con il computer
rivoluzione scientifica (tesi di Kuhn)
GIOCHIAMO CON MARTIN GARDNER
1 Nuovo Obbligo Scolastico: Gli Assi Culturali. 2 Asse dei Linguaggi Asse Matematico Asse Scientifico-Tecnologico Asse Storico Sociale.
Parte 1 Introduzione al corso
Prof. Francesco Gaspare Caputo
IO E LA MATEMATICA PROCEDURALE
INTERVISTA AL GENIO DELLA PORTA ACCANTO. CHI E’? Nome: Alberto Eta’: 67 anni Istruzione: perito in telecomunicazioni Lavoro: coordinatore IBM.
I FRATTALI Frattale di Mandebrot
L’EQUILIBRIO ECONOMICO GENERALE
Elementi di Geometria da un punto di vista superiore
Grafi CORDA – Informatica A. Ferrari Testi da Marco Bernardo Edoardo Bontà Dispense del Corso di Algoritmi e Strutture Dati.
Galois gioca con il cubo di Rubik
Circonferenza e cerchio
I numeri NATURALI.
PERCORSO DI RICERCA - AZIONE SUL CURRICOLO DI MATEMATICA
Una lunga e travagliata storia
Olimpiadi di Informatica 2010 Giornate preparatorie
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Frazioni e problemi.
Che cos’è la geometria?.
RACC0NTARE LA MATEMATICA
Analisi matematica Introduzione ai limiti
ASD a.a.2010/2011- Lezione 12 Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi Backtracking/ Branch and Bound Lezione n°12.
OTTIMIZZAZIONE DI UN PERCORSO GRAFO CAMMINO MINIMO.
Il triangolo di Sierpinski nella Scuola dell’Infanzia e Primaria
Unità di apprendimento 6
UN GENIO MATEMATICO: Waclaw Sierpinski Di Federica Rossi.
BLAISE PASCAL “Attraverso lo spazio, l’universo mi afferra e mi inghiotte come un granello; attraverso il pensiero, io afferro l’universo”
QUANDO I SENSI CI INGANNANO
Transcript della presentazione:

CARLI-DAMIANI-SALOMONE-TESAURO Strategie di giochi numerici e geometrici per valutare ed ottimizzare le vincite. CARLI-DAMIANI-SALOMONE-TESAURO

John Horton Conway John Horton Conway (Liverpool, 26 dicembre 1937) è un matematico inglese. Noto per i suoi risultati in settori di ricerca come teoria dei gruppi, teoria dei giochi, teoria dei nodi, teoria dei numeri, impacchettamento di sfere, teoria del moonshine, ma anche per i suoi brillanti libri di divulgazione e per i vari giochi e rompicapo che ha inventato.

Teoria dei giochi La teoria dei giochi è la scienza matematica che analizza situazioni di conflitto e ne ricerca soluzioni competitive e cooperative tramite modelli, ovvero uno studio di decisioni individuali in situazioni in cui vi sono interazioni tra due o più soggetti, tali per cui le decisioni di un soggetto possono influire sui risultati conseguibili da parte di un rivale secondo un meccanismo di retroazione, e sono finalizzate al massimo guadagno del soggetto. (Questa spiegazione per avere un’idea del modo di risolvere un problema posing , valutare le condizioni proposte e studiarne le strategie risolutive).

Giochi a blocchetti mobili Il più antico gioco a blocchetti mobili è il Khun Phaen di origine tailandese, il più recente è il Century Puzzle, proposto nel 1975 da John Horton Conway, e il più popolare è il Gioco del 15 propagandato da Sam Loyd alla fine dell'Ottocento. Tutti questi giochi sono costituiti da una serie di blocchetti mobili che possono scorrere all'interno di una scatola attraverso spazi vuoti, senza poter superare i confini della scatola stessa, dalla quale non possono neanche essere sollevati e riposizionati. (vengono traslati)

Il gioco di Conway Una variante di questo puzzle è stata proposta da Conway, uno dei più originali e anticonformisti matematici americani, al quale dobbiamo il più bel gioco matematico inventato negli ultimi cent'anni: il Gioco della vita. Century Puzzle è il nome che ha dato al suo gioco dei blocchetti mobili, semplicemente perché occorrono, al minimo, 100 mosse per arrivare alla soluzione e lo ha presentato come il più difficile gioco a blocchetti mobili su scacchiera 4 x 5. Regola del gioco: portare il quadrato rosso, dalla posizione centrale, in alto, alla posizione centrale in basso. Le possibili posizioni dei blocchetti, partendo dalla posizione iniziale di figura, calcolate al computer sono 109260.

Teoria dei nodi La teoria dei nodi è una branca della topologia, a sua volta branca della matematica, che si occupa di nodi, ovvero di curve chiuse intrecciate nello spazio. Un primo accenno di sistematizzazione della teoria dei nodi venne fatto da Vandermonde (1735-1796), il matematico che introdusse il determinante, nel XVIII secolo, ma a parte rari sprazzi, si dovette attendere la fine del XX secolo per vedere la teoria dei nodi trovare una formalizzazione, anche in conseguenza della sua importanza in fisica teorica, per l'elaborazione delle teorie note collettivamente come teoria delle stringhe.

Problema dei ponti di Königsberg Il problema dei sette ponti di Königsberg è un problema ispirato da una città reale e da una situazione concreta. Nel corso dei secoli è stata più volte proposta la questione se sia possibile con una passeggiata seguire un percorso che attraversi ogni ponte una e una volta soltanto e tornare al punto di partenza. Nel 1736 Leonhard Euler affrontò tale problema, dimostrando che la passeggiata ipotizzata non era possibile. Non sembra avere un fondamento storico, ma piuttosto essere una leggenda urbana, l'affermazione secondo la quale intorno al 1750 i cittadini benestanti di Königsberg la domenica passeggiassero per la loro città cercando invano di risolvere il problema.

Impostazione e soluzione di Eulero Eulero ha il merito di aver formulato il problema in termini di teoria dei grafi, astraendo dalla situazione specifica di Königsberg; innanzitutto eliminò tutti gli aspetti contingenti ad esclusione delle aree urbane delimitate dai bracci fluviali e dai ponti che le collegano; secondariamente rimpiazzò ogni area urbana con un punto, ora chiamato vertice o nodo e ogni ponte con un segmento di linea, chiamato spigolo, arco o collegamento. → →

Teoria dei grafi In matematica, informatica e, più in particolare, geometria combinatoria, la teoria dei grafi si occupa di studiare i grafi, oggetti discreti che permettono di schematizzare una grande varietà di situazioni e di processi e spesso di consentirne l'analisi in termini quantitativi e algoritmici.

Eulero Leonhard Euler, noto in Italia come Eulero è stato un matematico e fisico svizzero. È considerato il più importante matematico dell'Illuminismo. È noto per essere tra i più prolifici di tutti i tempi ed ha fornito contributi storicamente cruciali in svariate aree: analisi infinitesimale, funzioni speciali, meccanica razionale, meccanica celeste, teoria dei numeri, teoria dei grafi. Sembra che Pierre Simon Laplace abbia affermato "Leggete Eulero; egli è il maestro di tutti noi". Eulero è stato senz'altro il più grande fornitore di "denominazioni matematiche", offrendo il suo nome a una quantità impressionante di formule, teoremi, metodi, criteri, relazioni, equazioni. Anche se fu prevalentemente un matematico diede importanti contributi alla fisica e in particolare alla meccanica classica e celeste.

L’ impacchettamento di sfere In matematica, i problemi dell'impacchettamento di sfere riguardano le disposizioni di sfere identiche non in sovrapposizione che riempiono uno spazio. Di solito lo spazio coinvolto è uno spazio euclideo tri-dimensionale. Una disposizione regolare si verifica quando i centri delle sfere formano un modello molto simmetrico detto reticolo. Le disposizioni in cui le sfere non sono sistemate in un reticolo sono dette irregolari o aperiodiche. Le disposizioni regolari sono più facili da trattare di quelle irregolari, dato il loro alto grado di simmetria che le rende più facili da classificare e misurarne le densità.

Martin Gardner Martin Gardner è stato un matematico, illusionista e divulgatore scientifico statunitense, con interessi variegati che spaziavano dalla filosofia allo scetticismo scientifico. Egli ha inventato anche molti rompicapo tra cui: Un uomo sta guardando un dipinto. Ad un certo punto dice: "Io non ho né fratelli né sorelle, ma il padre di quest'uomo è figlio di mio padre". Di chi è il dipinto? Soluzione: Il dipinto è di suo figlio. Il figlio di suo padre, visto che non ha fratelli, è lui stesso, per cui quello che dice è equivalente a "Il padre di quest'uomo che guardo è figlio di mio padre, quindi sono io”.