Termodinamica Chimica

Slides:



Advertisements
Presentazioni simili
Termodinamica Chimica
Advertisements

Termodinamica Chimica
3. Le Trasformazioni Termodinamiche
Calore e lavoro La stessa variazione dello stato termodinamico di un sistema, misurata ad esempio dalla variazione della sua temperatura, può essere prodotta.
Il lavoro in termodinamica
TERMODINAMICA 1° Principio: variabili, lavoro, enunciati
Termodinamica Chimica
Gas perfetto e sue leggi
Termodinamica Chimica
Chimica Fisica Universita’ degli Studi dell’Insubria Termochimica
Termodinamica Chimica
Termodinamica Chimica
Termodinamica Chimica
TEORIA CINETICA DEI GAS
Diagrammi TS l’entropia e’ funzione di stato e puo’ essere usata,
Termodinamica Chimica
- velocità dell’auto v = 80 km/h;
Indice Principi della termodinamica Principi di conservazione
Trasformazioni termodinamiche Cicli e macchine termiche
Fisica 1 Termodinamica 4a lezione.
Marina Cobal - Dipt.di Fisica - Universita' di Udine
Trasformazioni termodinamiche Cicli e macchine termiche
Marina Cobal - Dipt.di Fisica - Universita' di Udine
Termodinamica SISTEMA: AMBIENTE:
Termodinamica SISTEMA: AMBIENTE:
TERMODINAMICA.
Equivalenza meccanica del calore (Mayer-Joule)
Lavoro termodinamico si ha scambio di energia mediante lavoro termodinamico quando si ha un cambiamento macroscopico della configurazione di un sistema.
Termodinamica classica
Il primo principio non basta a spiegare la spontaneità di un processo……………………… C costante, W numero di microstati.
Lenergia interna di un gas ideale dipende solo dalla temperatura. Non ci sono interazioni tra le particelle. P V a b a b a b a b AB Espansione isoterma.
PRIMO PRINCIPIO DELLA TERMODINAMICA
G.M. - Informatica B-Automazione 2002/03 Il lavoro in termodinamica Il lavoro rappresenta uno dei modi con cui, durante una trasformazione il sistema e.
Determinazione della variazione di energia interna del gas perfetto tra due stati qualsiasi Supponiamo di voler calcolare la variazione di energia interna.
Lezione IV TEORIA CINETCA & LAVORO Termodinamica chimica a.a Termodinamica chimica a.a
Lezione V PRIMO PRINCIPIO e ENTALPIA
Chimica Fisica Universita’ degli Studi dell’Insubria Calorimetria
Termodinamica Chimica
Chimica Fisica Equazione di Stato
Termodinamica Chimica
Chimica Fisica Universita’ degli Studi dell’Insubria Calore
Chimica Fisica Universita’ degli Studi dell’Insubria Energia e Lavoro
1 Chimica Fisica Equilibrio Liquido-Vapore Universita degli Studi dellInsubria
Calore Termodinamico Se Q < 0 Se Q > 0 Sistema Ts Sistema Ts
G.M. - Edile A 2002/03 Lequivalente meccanico del calore Abbiamo definito la caloria come la quantità di calore necessaria per innalzare la temperatura.
LA CONSERVAZIONE DELL’ENERGIA
Primo principio della termodinamica
1500 kWh di energia a quanti Joule corrispondono?
Parte X: Il Io Principio della Termodinamica
Termodinamica.
Due moli di idrogeno a temperatura T 1 = 400 K assorbendo il calore Q = 5590 J, ( se c v e’ costante) a quello B si ha per un gas perfetto che esegua una.
Fisica - M. Obertino Quesito 1 Quale fra quelle indicate di seguito non rappresenta un’unità di misura dell’energia? [a] Joule [b] Watt  s [c] Caloria.
Sistema, Ambiente e Universo
Perché le cose accadono? Cos’è la spontaneità? E’ la capacità di un processo di avvenire «naturalmente» senza interventi esterni In termodinamica, un processo.
3. Energia, lavoro e calore
7. Il primo principio della termodinamica
TERMOCHIMICA Studio del calore in gioco in una reazione chimica
Sistema, Ambiente e Universo
I principi della Termodinamica
Sistemi termodinamici Sistema: regione dello spazio oggetto delle nostre indagini. Ambiente: tutto ciò che circonda un sistema. Universo: sistema + ambiente.
1 Lezione XV-b Avviare la presentazione col tasto “Invio”
1 Lezione XIV -c Avviare la presentazione col tasto “Invio”
GAS: caratteristiche fondamentali
Termodinamica Introduzione. La TERMODINAMICA è nata per studiare i fenomeni termici, in particolare per studiare il funzionamento delle macchine termiche.
Funzioni di Stato Lo stato di un sistema viene definito in modo completo ed univoco da grandezze definite come variabili di stato: si definisce uno stato.
Trasformazioni termodinamiche
La spontaneità è la capacità di un processo di avvenire senza interventi esterni Accade “naturalmente” Termodinamica: un processo è spontaneo se avviene.
Transcript della presentazione:

Termodinamica Chimica Universita’ degli Studi dell’Insubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale Termodinamica Chimica Energia e Lavoro dario.bressanini@uninsubria.it http://scienze-como.uninsubria.it/bressanini

L’Energia e’, grossolanamente, la capacita’ di compiere un Lavoro Cosa e’ l’Energia L’Energia e’, grossolanamente, la capacita’ di compiere un Lavoro Un Lavoro e’ una Forza moltiplicata per uno spostamento © Dario Bressanini

Energia Cinetica l’Energia cinetica e’ dovuta al moto di un corpo © Dario Bressanini

Energia potenziale l’Energia potenziale e’ dovuta alla posizione di un corpo in un campo di forze Altri campi di forze generano diverse funzioni di energia potenziale © Dario Bressanini

Unita’ di misura dell’Energia L’unita’ di misura del sistema SI e’ il Joule. 1.00 kg m2/s2 = 1.00 Joule (J) In Chimica alcuni usano ancora le calorie: 1 cal = 4.184 J © Dario Bressanini

Il Lavoro Consideriamo un sistema con delle forze non bilanciate Queste forze causano uno spostamento: viene compiuto un Lavoro © Dario Bressanini

Lavoro = Forza x Spostamento w = mgDh Dh Nota: Arnold NON compie lavoro se mantiene il peso sopra la testa © Dario Bressanini

Tipi di Lavoro Meccanico © Dario Bressanini

Lavoro Il lavoro e’ una Forza per uno Spostamento Tuttavia, se la forza non e’ costante, si considera il lavoro infinitesimo © Dario Bressanini

Vari tipi di Lavoro Con il progredire delle conoscenze scientifiche, altri tipi di lavoro si sono aggiunti al lavoro meccanico. Ad esempio il lavoro elettrico, o magnetico, in cui, apparentemente non vi è un movimento macroscopico Tuttavia è sempre possibile, almeno concettualmente, trasformare tutte le varietà di lavoro in lavoro meccanico. Anche l’espansione (o compressione) di un gas in un cilindro può essere convertita in lavoro utile per sollevare un peso. È per questo motivo che, parlando di “lavoro”, possiamo limitarci a considerare il lavoro meccanico compiuto da un gas © Dario Bressanini

Lavoro in Termodinamica In Chimica molte reazioni coinvolgono gas, e possono generare lavoro. Vista l’equivalenza tra tutti i tipi di lavoro, considereremo solo il Lavoro di Espansione di un Gas Convenzione: quando un sistema di espande contro una pressione esterna costante pex, il lavoro fatto dal sistema e’ -pex DV. w = - pex DV © Dario Bressanini

Universo = Sistema + Ambiente Sistema e Ambiente Sistema: Parte dell’Universo che siamo interessati a studiare Ambiente: Tutto il resto Universo = Sistema + Ambiente © Dario Bressanini

Lavoro di Espansione Se un Gas si espande nella contro una forza F per una distanza dx , il lavoro compiuto e’ -Fdx. A dx dV F dw = -Fdx = -pAdx = -pdV In forma integrale © Dario Bressanini

Convenzione del Segno Gas Pex Il segno negativo indica che, quando il sistema lavora contro una forza esterna, la sua energia interna diminuisce Gas Pex Notate che è la pressione ESTERNA che determina il lavoro, NON quella interna © Dario Bressanini

Interpretazione Grafica del Lavoro Rappresenta un’area nel piano PV (in modulo) Dipende dal cammino 1 2 W p V 1 2 W p V © Dario Bressanini

Interpretazione Grafica del Lavoro © Dario Bressanini

Funzione di Stato Una funzione di stato è una proprietà del sistema che dipende solamente dallo stato in considerazione, e non dalla natura del processo (cammino) attraverso il quale il sistema è arrivato allo stato attuale Un banale esempio di funzione di stato è l’altezza © Dario Bressanini

Funzioni di Stato Dh non dipende dal cammino © Dario Bressanini

Il Lavoro NON e’ una funzione di stato Il Lavoro compiuto dipende dal cammino L’altezza finale non dipende dal cammino Il tempo trascorso dipende dal cammino © Dario Bressanini

Lavoro per processi diversi Il lavoro compiuto dipende dal cammino percorso (cioe’, dal tipo di processo) Calcoliamo ora il lavoro eseguito per alcuni processi semplici Espansione libera nel vuoto Espansione a pressione costante (processo isobaro) Processo isocoro Espansione isoterma reversibile di un Gas ideale © Dario Bressanini

Espansione di un Gas nel Vuoto Consideriamo un gas che si espande nel vuoto. Nel vuoto pex = 0 quindi w = 0 Qui l’interpretazione molecolare è ovvia. Togliendo la parete divisoria, aumenta solo il tempo medio tra due collisioni, NON la velocita’ media molecolare Il Gas NON compie lavoro espandendosi nel vuoto © Dario Bressanini

Espansione a Pressione Costante Consideriamo ora un sistema che si espande contro una pressione che rimane costante (ad esempio la pressione atmosferica) © Dario Bressanini

Processo Isobaro © Dario Bressanini

Processo Isocoro Consideriamo un sistema che subisce un processo isocoro, cioè non cambia di volume Poichè il volume non cambia, non viene compiuto nessun lavoro. © Dario Bressanini

Processo Isocoro © Dario Bressanini

Processi Reversibili Un Processo reversibile è un processo che può essere “invertito” con un cambiamento infinitesimo di una variabile. Il Sistema è, istante per istante, in equilibrio con l’ambiente. È una idealizzazione. Non esiste in realta’. È necessario introdurre il concetto astratto di “processo reversibile” perché la Termodinamica Classica dell’Equilibrio, non utilizza la variabile tempo. © Dario Bressanini

Processi Reversibili Non vi sono Forze Dissipative Non vi e’ frizione Non vi sono forze non bilanciate (processo quasi-statico) Non vi sono processi chimici o trasferimenti macroscopici di calore Richiedono un tempo Infinito SONO ASTRAZIONI TEORICHE I processi reversibili generano il lavoro massimo © Dario Bressanini

Processi Irreversibili Sono presenti forze dissipative o forze non bilanciate (espansione libera, ad esempio) Vi e’ un trasferimento di calore tra corpi con una differenza finita di temperatura Irreversibilita’ chimica Richiede un tempo finito TUTTI I PROCESSI SPONTANEI SONO IRREVERSIBILI!! © Dario Bressanini

Espansione Reversibile Nel caso di un gas in espansione, il processo è reversibile se, istante per istante, la pressione esterna è uguale alla pressione interna, e quindi il sistema è in equilibrio. Quindi l’espressione del lavoro per un gas ideale diventa © Dario Bressanini

Espansione Isoterma Reversibile Consideriamo ora un’espansione isoterma reversibile da Vi a Vf Se espandiamo il gas in modo irreversibile, il lavoro compiuto è w = - pex DV Il Lavoro Reversibile e’ maggiore del lavoro irreversibile (vero in generale) © Dario Bressanini

Processo Isotermo Reversibile © Dario Bressanini

Lavoro Isotermo Reversibile © Dario Bressanini

Espansione Isoterma Irreversibile Consideriamo una espansione isoterma irreversibile di una mole di gas ideale da 3.00 atm a 2.00 atm a 300 K contro una pressione costante di 1.00 atm: 1.00 atm 3.00 atm 2.00 atm Gas ideale 1.00 mole 300 K irreversibile termostatato a 300 K Il Lavoro fatto dal gas è w = - Pext [ V2 - V1] Il Lavoro fatto dal gas è w = - Pext [ V2 - V1] Calcoliamo il volume dall’equazione di stato dei gas ideali w = - Pext [ nRT/P2 - nRT/P1] = - n R T Pext [1/P2 - 1/P1] = - (1.00 mole)(8.314 J/mole K)(300 K)[1/2.0 atm - 1/3.0 atm] = - 416 J © Dario Bressanini

Espansione Isoterma Irreversibile Il Lavoro di espansione, in modulo, e’ pari all’area gialla nel piano PV © Dario Bressanini

Espansione Isoterma Reversibile Consideriamo la stessa espansione di prima, ma ora aggiungiamo abbastanza acqua sul pistone da generare 2.00 atm di pressione, aggiunte alla pressione atmosferica. Il sistema è in equilibrio e non si muove. Ora le molecole evaporano ad una ad una, e creano una differenza (quasi) infinitesima di pressione che causa una espansione infinitesima. A mano a mano che l’acqua evapora, il gas si espande sino a che raggiunge la pressione di 2.00 atm: 1.00 atm 3.00 atm 2.00 atm Gas ideale 1.00 mole 300 K reversibile termostatato a 300 K 2.00 atm di acqua La pressione del gas cambia durante l’espansione, ed è uguale alla pressione esterna in ogni punto del cammino © Dario Bressanini

Espansione Isoterma Reversibile Il lavoro infinitesimo compiuto è: dw = -pdV = -nRT/V dV Integrando l’espressione precedente otteniamo w = - nRT ln (V2/V1) = - nRT ln (P1/P2) = - (1.00 mole) (8.314 J/mole K) (300 K) * ln (3.00 atm/2.00 atm) = - 1.01 x 10+3 J Notate come il lavoro compiuto nel caso reversibile sia maggiore del lavoro compiuto irreversibilmente © Dario Bressanini

Espansione Isoterma Reversibile Why does the reversible work represent the maximum possible work that can be achieved during the expansion (hint: a single step irreversible expansion against an external pressure of 3.50 atm or even 2.50 atm would result in a greater amount of work - why isn’t this possible)? Il lavoro di espansione e’, in modulo, pari all’area gialla Perche’ il lavoro reversibile è quello massimo ottenibile? © Dario Bressanini

Equilibrio e non-Equilibrio © Dario Bressanini