Algoritmi e Strutture Dati

Slides:



Advertisements
Presentazioni simili
Algoritmi e Strutture Dati
Advertisements

Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti ottimi.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Strutture dati per.
Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie di analisi.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Interrogazioni.
Capitolo 13 Cammini minimi: Algoritmo di Floyd e Warshall Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 4 Ordinamento: Heapsort Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Boruvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Algoritmi e Strutture Dati
Visite di grafi Algoritmi e Strutture Dati. Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 9 Il problema della gestione di insiemi disgiunti (Union-find) Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Capitolo 7 Tavole hash Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Un albero è un grafo.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 K 4 è planare? Sì!
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Algoritmi e Strutture Dati
Capitolo 6 Alberi di ricerca Algoritmi e Strutture Dati.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Soluzione esercizio.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Soluzione esercizio.
Capitolo 13 Cammini minimi: Algoritmo di ordinamento topologico, di Dijkstra, e di Floyd e Warshall Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 4 Ordinamento: Heapsort Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Progettare algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmo di Prim Algoritmi e Strutture.
Capitolo 6 Alberi di ricerca Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati.
Transcript della presentazione:

Algoritmi e Strutture Dati Capitolo 8 Code con priorità Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano

Tipo di dato CodaPriorità (1/2) Copyright © 2004 - The McGraw - Hill Companies, srl

Tipo di dato CodaPriorità (2/2) Copyright © 2004 - The McGraw - Hill Companies, srl

Tre implementazioni d-heap: generalizzazione degli heap binari visti per l’ordinamento heap binomiali heap di Fibonacci Copyright © 2004 - The McGraw - Hill Companies, srl

d-heap Copyright © 2004 - The McGraw - Hill Companies, srl

Definizione Un d-heap è un albero radicato d-ario con le seguenti proprietà: Struttura: è completo almeno fino al penultimo livello Contenuto informativo: ogni nodo v contiene un elemento elem(v) ed una chiave chiave(v) presa da un dominio totalmente ordinato Ordinamento parziale (inverso) dell’heap: chiave(v) ≥ chiave(parent(v)) per ogni nodo v diverso dalla radice Copyright © 2004 - The McGraw - Hill Companies, srl

Esempio Heap d-ario con 18 nodi e d=3 Copyright © 2004 - The McGraw - Hill Companies, srl

Proprietà Un d-heap con n nodi ha altezza O(logd n) La radice contiene l’elemento con chiave minima (per via della proprietà di ordinamento a heap) Può essere rappresentato implicitamente tramite vettore posizionale grazie alla proprietà di struttura Copyright © 2004 - The McGraw - Hill Companies, srl

Procedure ausiliarie Utili per ripristinare la proprietà di ordinamento a heap su un nodo v che non la soddisfi T(n)=O(logd n) T(n)=O(d logd n) Copyright © 2004 - The McGraw - Hill Companies, srl

findMin T(n)=O(1) Copyright © 2004 - The McGraw - Hill Companies, srl

insert(elem e, chiave k) T(n)=O(logd n) per l’esecuzione di muoviAlto Copyright © 2004 - The McGraw - Hill Companies, srl

delete(elem e) e deleteMin T(n)= O(logd n) o O(d logd n) per l’esecuzione di muoviAlto o muoviBasso (supponendo sia dato in input il puntatore all’elemento da cancellare) Può essere usata anche per implementare la cancellazione del minimo Copyright © 2004 - The McGraw - Hill Companies, srl

decreaseKey(elem e, chiave d) T(n)=O(logd n) per l’esecuzione di muoviAlto Copyright © 2004 - The McGraw - Hill Companies, srl

increaseKey(elem e, chiave d) T(n)=O(d logd n) per l’esecuzione di muoviBasso Copyright © 2004 - The McGraw - Hill Companies, srl

Heap binomiali Copyright © 2004 - The McGraw - Hill Companies, srl

Alberi binomiali Un albero binomiale Bh è definito ricorsivamente come segue: B0 consiste di un unico nodo Per i≥0, Bi+1 è ottenuto fondendo due alberi binomiali Bi con la radice dell’uno come figlia della radice dell’altro Copyright © 2004 - The McGraw - Hill Companies, srl

Proprietà strutturali Copyright © 2004 - The McGraw - Hill Companies, srl

Definizione di heap binomiale Un heap binomiale è una foresta di alberi binomiali con le seguenti proprietà: Struttura: ogni albero Bi nella foresta è un albero binomiale Unicità: per ogni i, esiste al più un Bi nella foresta Contenuto informativo: ogni nodo v contiene un elemento elem(v) ed una chiave chiave(v) presa da un dominio totalmente ordinato Ordinamento a heap: chiave(v) ≥ chiave(parent(v)) per ogni nodo v diverso da una delle radici Copyright © 2004 - The McGraw - Hill Companies, srl

Proprietà In un heap binomiale con n nodi, vi sono al più log2 n alberi binomiali, ciascuno con grado ed altezza O(log n) Copyright © 2004 - The McGraw - Hill Companies, srl

Procedura ausiliaria Utile per ripristinare la proprietà di unicità in un heap binomiale T(n) è proporzionale al numero di alberi binomiali in input Copyright © 2004 - The McGraw - Hill Companies, srl

Copyright © 2004 - The McGraw - Hill Companies, srl

Copyright © 2004 - The McGraw - Hill Companies, srl

Realizzazione (1/3) Copyright © 2004 - The McGraw - Hill Companies, srl

Realizzazione (2/3) Copyright © 2004 - The McGraw - Hill Companies, srl

Realizzazione (3/3) Tutte le operazioni richiedono tempo T(n) = O(log n) Durante l’esecuzione della procedura ristruttura esistono infatti al più tre Bi, per ogni i ≥ 0 Copyright © 2004 - The McGraw - Hill Companies, srl

Copyright © 2004 - The McGraw - Hill Companies, srl

Copyright © 2004 - The McGraw - Hill Companies, srl

Heap di Fibonacci Copyright © 2004 - The McGraw - Hill Companies, srl

Heap di Fibonacci Heap binomiale rilassato: si ottiene da un heap binomiale rilassando la proprietà di unicità dei Bi ed utilizzando un atteggiamento più “pigro” durante l’operazione insert (perché ristrutturare subito la foresta quando potremmo farlo dopo?) Heap di Fibonacci: si ottiene da un heap binomiale rilassato rilassando la proprietà di struttura dei Bi che non sono più necessariamente alberi binomiali Analisi sofisticata: i tempi di esecuzione sono ammortizzati su sequenze di operazioni Copyright © 2004 - The McGraw - Hill Companies, srl

Conclusioni: tabella riassuntiva L’analisi di DHeap e HeapBinomiale è nel caso peggiore, mentre quella per HeapBinomialeRilassato e HeapFibonacci è ammortizzata Copyright © 2004 - The McGraw - Hill Companies, srl

Esercizio di approfondimento Creare ed unire i 2 Heap Binomiali sui seguenti insiemi Copyright © 2004 - The McGraw - Hill Companies, srl