Algoritmi e Strutture Dati

Slides:



Advertisements
Presentazioni simili
Algoritmi e Strutture Dati
Advertisements

Il problema della ricerca Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti ottimi.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie di analisi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie di analisi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie di analisi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie di analisi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 4 Ordinamento:
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 4 Ordinamento:
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Interrogazioni.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Capitolo 1 Unintroduzione.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 4 Ordinamento: Heapsort Algoritmi e Strutture Dati.
Il problema della ricerca Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Il problema della ricerca Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Algoritmi e Strutture Dati
Visite di grafi Algoritmi e Strutture Dati. Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 9 Il problema della gestione di insiemi disgiunti (Union-find) Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Usa la tecnica del.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Diremo che f(n) =
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati Luciano Gualà
Capitolo 9 Il problema della gestione di insiemi disgiunti (Union-find) Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
1 Ordinamento (Sorting) INPUT: Sequenza di n numeri OUTPUT: Permutazione π = tale che a 1 ’  a 2 ’  … …  a n ’ Continuiamo a discutere il problema dell’ordinamento:
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Soluzione esercizio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Soluzione esercizio.
1 Ordinamento (Sorting) Input: Sequenza di n numeri Output: Permutazione π = tale che: a i 1  a i 2  ……  a i n Continuiamo a discutere il problema dell’ordinamento:
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 4 Ordinamento: Heapsort Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Progettare algoritmi.
Capitolo 6 Il problema del dizionario Algoritmi e Strutture Dati.
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Sesta giornata Risolvere efficientemente un problema in P: Il problema dell’ordinamento: Insertion.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento: lower bound Ω(n log n) e MergeSort ((*) l’intera lezione) Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Capitolo 1 Un’introduzione.
Capitolo 6 Alberi di ricerca Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Algoritmi e Strutture Dati
Transcript della presentazione:

Algoritmi e Strutture Dati Capitolo 4 Ordinamento Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano

Lower bound Delimitazione inferiore alla quantità di una certa risorsa di calcolo necessaria per risolvere un problema W(n log n) è un lower bound al numero di confronti richiesti per ordinare n oggetti Consideriamo un generico algoritmo A, che ordina eseguendo solo confronti: dimostreremo che A esegue W(n log n) confronti Copyright © 2004 - The McGraw - Hill Companies, srl

…alcuni richiami… Definizione (upper bound) Un problema P ha una complessità O(f(n)) rispetto ad una risorsa di calcolo se esiste un algoritmo che risolve P il cui costo di esecuzione rispetto quella risorsa (nel caso peggiore) è O(f(n)) Definizione (lower boud) Un problema P ha una complessità (f(n)) rispetto ad una risorsa di calcolo se ogni algoritmo che risolve P ha costo di esecuzione (nel caso peggiore) (f(n)) rispetto quella risorsa Copyright © 2004 - The McGraw - Hill Companies, srl

…per il problema dell’ordinamento… Upper bound: O(n2) Insertio Sort, Selection Sort, Boubble Sort Lower bound: (n) banale: dimensione dell’input Abbiamo un gap lineare tra upper bound e lower bound! Possiamo fare meglio? Copyright © 2004 - The McGraw - Hill Companies, srl

Ordinamento per confronti Dati due elementi ai ed aj, per determinarne l’ordinamento relativo effettuiamo una delle seguenti operazioni di confronto: ai  aj ; ai  aj ; ai  aj ; ai  aj ; ai  aj Non si possono esaminare i valori degli elementi o ottenere informazioni sul loro ordine in altro modo. Notare: Tutti gli algoritmi di ordinamento considerati fino ad ora sono algoritmi di ordinamento per confronto. Copyright © 2004 - The McGraw - Hill Companies, srl

Confronta due elementi ai ed aj (ad esempio effettua il test ai  aj); Gli algoritmi di ordinamento per confronto possono essere descritti in modo astratto in termini di alberi di decisione. Un generico algoritmo di ordinamento per confronto lavora nel modo seguente: Confronta due elementi ai ed aj (ad esempio effettua il test ai  aj); A seconda del risultato – riordina e/o decide il confronto successivo da eseguire. Albero di decisione - Descrive i confronti che l’algoritmo esegue quando opera su un input di una determinata dimensione. I movimenti dei dati e tutti gli altri aspetti dell’algoritmo vengono ignorati Copyright © 2004 - The McGraw - Hill Companies, srl

Alberi di decisione Descrive le diverse sequenze di confronti che A potrebbe fare su istanze di lunghezza n Copyright © 2004 - The McGraw - Hill Companies, srl

…alcune definizioni… radice Sotto-albero sinistro Sotto-albero destro Profondità di un nodo: lunghezza del cammino che lo congiunge alla radice. Altezza di un albero: valore massimo della profondità dei nodi. Copyright © 2004 - The McGraw - Hill Companies, srl

Proprietà Per una particolare istanza, i confronti eseguiti da A su quella istanza rappresentano un cammino radice – foglia L’algoritmo segue un cammino diverso a seconda delle caratteristiche dell’input Caso peggiore: cammino più lungo Caso migliore: cammino più breve Il numero di confronti nel caso peggiore è pari all’altezza dell’albero di decisione Un albero di decisione per l’ordinamento di n elementi contiene almeno n! foglie Copyright © 2004 - The McGraw - Hill Companies, srl

Altezza in funzione delle foglie Un albero binario con k foglie tale che ogni nodo interno ha esattamente due figli ha altezza almeno log2 k Dimostrazione per induzione su k Copyright © 2004 - The McGraw - Hill Companies, srl

Il lower bound W(n log n) L’altezza h dell’albero di decisione è almeno log2 (n!) Formula di Stirling: n!  (2pn)1/2 ·(n/e)n h  log2(n!) > log2 (n/e)n = = n log2 (n/e) = n! > (n/e)n = n log2 n – n log2 e = = W(n log n) Copyright © 2004 - The McGraw - Hill Companies, srl

Esercizio Fornire l’albero di decisione del seguente algoritmo per istanze di dimensione 3. InsertionSort2 (A) for k=1 to n-1 do x = A[k+1] j = k while j > 0 e A[j] > x do A[j+1] = A[j] j= j-1 A[j+1]=x Copyright © 2004 - The McGraw - Hill Companies, srl

Soluzione           a1:a2 a2:a3 a1:a3 <a1,a2,a3> a1:a3 Copyright © 2004 - The McGraw - Hill Companies, srl