Algoritmi e Strutture Dati

Slides:



Advertisements
Presentazioni simili
Algoritmi e Strutture Dati
Advertisements

Il problema della ricerca Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti ottimi.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Usa la tecnica del.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie di analisi.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Borůvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Elementi di Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Interrogazioni.
Capitolo 13 Cammini minimi: Algoritmo di Floyd e Warshall Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Capitolo 1 Unintroduzione.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 4 Ordinamento: Heapsort Algoritmi e Strutture Dati.
Il problema della ricerca Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Il problema della ricerca Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Capitolo 12 Minimo albero ricoprente: Algoritmi di Prim e di Boruvka Algoritmi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 8 Code con.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Algoritmi e Strutture Dati
Visite di grafi Algoritmi e Strutture Dati. Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Un albero è un grafo.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Diremo che f(n) =
Capitolo 7 Tavole hash Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 K 4 è planare? Sì!
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Rotazioni.
Capitolo 8 Code con priorità Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Capitolo 12 Minimo albero ricoprente Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Capitolo 1 Un’introduzione.
Capitolo 11 Visite di grafi Algoritmi e Strutture Dati.
Capitolo 1 Un’introduzione informale agli algoritmi Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Capitolo 13 Cammini minimi: Algoritmo di ordinamento topologico, di Dijkstra, e di Floyd e Warshall Algoritmi e Strutture Dati.
Il problema della ricerca Algoritmi e Strutture Dati.
Analisi asintotica e Metodi di analisi Algoritmi e Strutture Dati.
Capitolo 13 Cammini minimi Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Transcript della presentazione:

Algoritmi e Strutture Dati Ancora sul teorema master

Teorema Master (*) La relazione di ricorrenza: a T(n/b) + f(n) se n>1 Θ(1) se n=1 T(n) = ha soluzione: 1. T(n) = Q(n ) se f(n)=O(n ) per qualche e>0 logba logba - e 2. T(n) = Q(n log n) se f(n) = Q(n ) logba logba + e 3. T(n) = Q(f(n)) se f(n)=W(n ) per qualche e>0 (ma sotto l’ulteriore ipotesi che f(n) soddisfi la “condizione di regolarità”: a f(n/b)≤ c f(n) per qualche c<1 ed n sufficientemente grande) Copyright © 2004 - The McGraw - Hill Companies, srl

Dimostrazione del caso 1 Albero della ricorsione Copyright © 2004 - The McGraw - Hill Companies, srl

Proprietà dell’albero della ricorsione Proprietà 1: il numero di nodi a livello i dell’albero della ricorsione è ai (ricorda che la radice è a livello 0) Proprietà 2: i sottoproblemi a livello i dell’albero della ricorsione hanno dimensione n/bi Proprietà 3: il contributo al tempo di esecuzione di un nodo a livello i (escluso tempo chiamate ricorsive) è f(n/bi) Proprietà 4: il numero di livelli dell’albero è logb n logb n T(n)= ai f(n/bi) i=0 Copyright © 2004 - The McGraw - Hill Companies, srl

…quindi, nel caso 1 Inoltre, T(n) a (ultimo termine della sommatoria) = n = Ω(n ), da cui la tesi. I casi 2 e 3 possono essere gestiti in modo analogo. QED logb n logb a Copyright © 2004 - The McGraw - Hill Companies, srl

Esempi 1) T(n) = n + 2T(n/2) 2) T(n) = c + 3T(n/9) a=2, b=2, f(n)=n=Q(n ) T(n)=Q(n log n) (caso 2 del teorema master) log22 2) T(n) = c + 3T(n/9) a=3, b=9, f(n)=c=O(n ) T(n)=Q(√n) (caso 1 del teorema master) log93 - e 3) T(n) = n + 3T(n/9) a=3, b=9, f(n)=n=W(n ) (caso 3 del teorema master) log93 + e T(n)=Q(n) 3(n/9)≤ c n per c=1/3 Copyright © 2004 - The McGraw - Hill Companies, srl

Esempi 4) T(n) = n log n + 2T(n/2) a=2, b=2, f(n) ≠ Θ (n ) (e quindi non ricade nel caso 2), ma non esiste alcun  > 0 per cui f(n)=W(n )W(n1+) (infatti, per ogni  > 0 ) log22 log22+ non si può applicare il teorema Master! Copyright © 2004 - The McGraw - Hill Companies, srl