CALCOLO LETTERALE I PRODOTTI NOTEVOLI

Slides:



Advertisements
Presentazioni simili
Calcolo letterale I POLINOMI
Advertisements

4x-5y I POLINOMI xyz (a+b).
x2 – 4x + 1 x – 3 6x 5y2 ; x2 – 4x + 1 x – 3 x – 3 ≠ 0 x ≠ 3
SCOMPOSIZIONE IN FATTORI PRIMI
I.T.C.G. Mosè Bianchi Mauro Bosisio Classe A2 Geometri Anno scolastico 2000\2001.
Mat_Insieme Lavoro di Gruppo a tre mani Prodotti Notevoli
Cos’è la fattorizzazione
Mat_Insieme Lavoro di Gruppo Prodotti Notevoli
comunque si considerino sono sicuramente
realizzazione di Angelo Caporizzo
La scomposizione in fattori di un polinomio. Le frazioni algebriche.
LE EQUAZIONI DI SECONDO GRADO
L’algebra e la scomposizione
Prodotti notevoli Definizione
MONOMI E POLINOMI Concetto di monomio Addizione di monomi
esponente del radicando
2ab2 2b4 4x − 2y a 3b2y3 3b2y3b Definizione e caratteristiche
Difficoltà tipiche dell’Algebra
Come si calcola una potenza n di un binomio?
IL QUADRATO DI UN TRINOMIO
(pane quotidiano dell’algebra, dannazione… degli studenti)
DefinizioneUn polinomio si dice…. Operazioni con i polinomi Prodotti notevoli Regola di RuffiniTeorema del resto di Ruffini fine Mammana Achille Patrizio.
FATTORIZZAZIONE di un polinomio
PROBLEMA Sara ha bisogno di sapere da Andrea quali sono i capitoli di Filosofia da ripassare per il giorno dopo. Andrea le risponde con il seguente messaggio:”I.
(A+B+C)2=A2+B2+C2+2AB+2AC+2BC
Istituto di Istruzione Secondaria Superiore “ G.G. Adria”
dal particolare al generale
Progetto DigiScuola Corso di formazione Gruppo Matematica Autori:
SCOMPOSIZIONE DI UN POLINOMIO IN FATTORI
comunque si considerino sono sicuramente
APPUNTI DI MATEMATICA schema degli appunti
SCOMPOSIZIONE DI POLINOMI
CALCOLO LETTERALE Concetto di monomio Addizione di monomi
chi ha paura della matematica?
SCOMPOSIZIONI.
Ti spiego il perché e anche che…
LA SOMMA DI DUE MONOMI PER LA LORO DIFFERENZA
I prodotti notevoli Quadrato di di binomio trinomio Quadrato di
LA SCOMPOSIZIONE DI POLINOMI IN FATTORI
SCOMPOSIZIONE IN FATTORI PRIMI di un polinomio
Operazioni con i polinomi
Polinomi Definizioni Operazioni Espressioni Esercizi
poligoni equivalenti Proprietà riflessiva A=A Proprietà simmetrica
Somma fra frazioni algebriche
I prodotti notevoli Prof.ssa Fava M.A.
I Prodotti Notevoli.
Sei pronto a “magnarteli”?
Scomposizione polinomi
I POLINOMI E LE LORO OPERAZIONI
I polinomi.
CALCOLO LETTERALE Perché?
LE EQUAZIONI DI PRIMO GRADO
Linguaggio extraterreste ……con numeri e lettere
MONOMI E POLINOMI.
ISTITUTO PROFESSIONALE DI STATO PER I SERVIZI COMMERCIALI TURISTICO ALBERGHIERI E DELLA RISTORAZIONE “B. STRINGHER”- UDINE I monomi A cura della Prof.ssa.
a cura dei prof. Roberto Orsaria e Monica Secco
Calcolo letterale.
La Moltiplicazione fra monomi
Moltiplicazione di un monomio per un polinomio
alunni della classe 2 a C dell’I.T.I.S.“VERONA TRENTO” di Messina, ci raccontano cosa sono, come si calcolano e come si dimostrano i………
PROBLEMI SENZA PROBLEMI!!!
Che cosa sono e come si usano
Prodotti notevoli.
Algoritmo per il calcolo del maggiore tra tre numeri qualsiasi Francesco PUCILLO matr
I.P.S.I.A.M. -- I.T.Nautico Trasporti e Logistica -- IPSIA “A. Banti” ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE “A.VESPUCCI” Cod. Mecc. BAIS
Le espressioni algebriche letterali
PPPP rrrr oooo dddd oooo tttt tttt iiii N N N N oooo tttt eeee vvvv oooo llll iiii TTTT aaaa bbbb eeee llll llll aaaa d d d d iiii S S S S cccc oooo mmmm.
Calcolo letterale I POLINOMI
(A+B+C)2=A2+B2+C2+2AB+2AC+2BC
Apprendimento visuale: Il Calcolo letterale
Transcript della presentazione:

CALCOLO LETTERALE I PRODOTTI NOTEVOLI ISTITUTO PROFESSIONALE DI STATO PER I SERVIZI COMMERCIALI TURISTICO ALBERGHIERI E DELLA RISTORAZIONE “B. STRINGHER”- UDINE CALCOLO LETTERALE I PRODOTTI NOTEVOLI a cura dei prof. Roberto Orsaria e Monica Secco

Cosa sono i prodotti notevoli? Sono particolari prodotti o potenze di polinomi, che si sviluppano secondo formule facilmente memorizzabili. I più comuni sono: il quadrato di un binomio, la differenza di due quadrati, il quadrato di un trinomio, il cubo di un binomio

Quadrato di un binomio Si può presentare nelle due forme: (a+b)2 e

Sviluppo del quadrato di un binomio Applichiamo la regola della moltiplicazione di polinomi: (a+b)2= (a+b)· (a+b)= a2+ab+ba+b2= sommando i monomi simili, otteniamo =a2+2ab+b2

Formula del quadrato di un binomio Senza effettuare ogni volta tutti i passaggi si può memorizzare la formula finale del quadrato di un binomio: (a+b)2= a2+2ab+b2

Quindi: Il quadrato di un binomio è uguale alla somma del quadrato del primo termine (a2) più il quadrato del secondo (b2) termine più il doppio prodotto dei due termini (+2ab). (a+b)2= a2+2ab+b2

Della formula del quadrato di un binomio si può dare anche una interpretazione geometrica: costruiamo un quadrato di lato a+b: la sua area vale A= (a+b)·(a+b)=(a+b)2 a b

il quadrato è scomponibile nelle figure seguenti: un quadrato di area a2 due rettangoli di area ab e un quadrato di area b2 a2 ab b2 a2 ab ab b2

Anche dall’interpretazione geometrica si può quindi vedere che lo sviluppo di (a+b)2 non è dato solo dalla somma dei due termini a2 e b2, ma anche dal doppio prodotto 2ab a2 ab b2 ab

Cosa cambia per (a-b)2 ? Nel caso di (a-b)2 cambia solo il segno del doppio prodotto (-2ab), per cui otteniamo: (a-b)2= a2 –2ab+b2

Quadrato di un trinomio Un altro prodotto notevole è il quadrato di un trinomio: (a+b+c)2

Per ottenere la formula del quadrato di un trinomio si applica la regola del prodotto di polinomi: (a+b+c)2= (a+b+c)(a+b+c)= = a2+ab+ac+ba+b2+bc+ca+cb+c2= semplificando i monomi simili si ottiene: = a2+b2+c2 +2ab+2ac+2bc

costruiamo un quadrato di lato a+b+c e scomponiamolo come in figura: Anche per la formula del quadrato del trinomio si può dare una giustificazione geometrica: costruiamo un quadrato di lato a+b+c e scomponiamolo come in figura: a2 ab ac a b ab b2 bc c ac bc c2

(a+b+c)2 = a2+b2+c2+2ab+2ac+2bc L’area del quadrato di lato a+b+c è pari a (a+b+c)2 ma, come si vede dalla figura, è anche uguale alla somma delle aree dei quadrati e dei rettangoli in cui è stato scomposto e cioè a: (a+b+c)2 = a2+b2+c2+2ab+2ac+2bc che è la formula del quadrato di un trinomio a2 ab + + b2 + c2 ab ac bc + + ac bc

Differenza di quadrati Consideriamo il prodotto (a+b)(a-b) e applichiamo la regola del prodotto di polinomi: (a+b)(a-b)= a2-ab+ba-b2 = semplifichiamo i due monomi simili: = a2-b2

questa è la formula della differenza di due quadrati quindi la formula finale è: (a+b) (a-b) = a2-b2 questa è la formula della differenza di due quadrati

Esempi: (2x+3y)(2x-3y)= 4x2-9y2 (a3+5b2)(a3-5b2)=a6-25b4

Cubo del binomio ovvero (a-b)3 Un altro prodotto notevole che si incontra è il cubo del binomio: (a+b)3 ovvero (a-b)3

Consideriamo il cubo del binomio come prodotto del quadrato del binomio per il binomio stesso: (a+b)3= (a+b)2(a+b) applichiamo la formula del quadrato del binomio: (a+b)2(a+b)= (a2+2ab+b2)(a+b) applichiamo ora la regola del prodotto di polinomi: (a2+2ab+b2)(a+b)=a3+a2b+2a2b+2ab2+b2a+b3= e sommando i monomi simili (dello stesso colore) otteniamo: =a3+3a2b+3ab2+b3

Formula del cubo di un binomio Quindi lo sviluppo del cubo di un binomio è: (a+b)3=a3+3a2b+3ab2+b3 e analogamente: (a-b)3=a3-3a2b+3ab2-b3