Grandezze elettriche.

Slides:



Advertisements
Presentazioni simili
Elettrostatica 6 30 maggio 2011
Advertisements

Potenza dissipata per effetto Joule:
GOVERNATORE SALVO SARPIETRO PER CONOSCERE LA ROTARY FOUNDATION
Prof. Roberto Capone Liceo Classico “F. De Sanctis “ Lacedonia (AV)
Struttura atomica Un atomo è formato da: nucleo centrale +
Elettricità Per strofinio i corpi acquistano una proprietà detta stato elettrico,per cui risultano in possesso di elettricità.
Fisica 2 Corrente continua
Fisica 2 Corrente continua
Corrente continua 2 6 giugno 2011
Fisica 2 Elettrostatica
CONDIZIONAMENTO ANALOGICO
ELETTRICITA’ E MAGNETISMO
FENOMENI ELETTROMAGNETICI
Parte II Corrente e conduttori
L’Elettricità.
Fenomeni elettrici Legge di Coulomb
Energia e potenza nei circuiti elettrici
L’elettricità Capobianco Salvatore Avanti Classe 3° D
Elettricità e magnetismo
Prof. Antonello Tinti La corrente elettrica.
Corrente elettrica Si consideri una sezione A di un conduttore e sia dq la carica elettrica totale che attraversa la sezione A in un intervallo di tempo.
Lavoro di un campo elettrico uniforme
CAMPO MAGNETICO GENERATO
PON FSE 2007/20131 PON I docenti e il Life Long Learning Programmazione 2007/2013 MIUR – Dip per la Programmazione, Direzione Generale Affari.
di Salvatore Massimo Gebbia
Le grandezze fondamentali dellelettricità sono: la carica elettrica, la corrente elettrica e il voltaggio. La corrente (I) è definita come la quantità
Circuiti Elettrici.
Corrente elettrica Elenco dei contenuti: Corrente elettrica
CORSO ALLIEVO ALLENATORE 2013 formatore: CESARE RIVA
Corrente e resistenza Cap. 27 HRW
L’elettricità.
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle.
RELAZIONE DI FISICA Sabato 26 Novembre 2005
CIRCUITI IN CORRENTE CONTINUA
Prof. Francesco Zampieri
Cenni teorici. La corrente elettrica dal punto di vista microscopico
Per comprendere questa distinzione occorre tornare alla natura della materia, ossia agli atomi da cui è composta: esistono atomi i cui nuclei trattengono.
PROPRIETA’ ELETTRICHE
Le leggi di Ohm Realizzazione a cura del Prof. Francesco Porfido.
La corrente elettrica Realizzazione a cura del Prof. Francesco Porfido.
Resistenze in serie e in parallelo
Alla temperatura di 37°C la viscosità del plasma è 2.5∙10 -5 Pa∙min, ossia: [a] 1.5mPa∙s [b] 1.5∙10 -8 mPa∙s [c] 4∙10 -4 mPa∙s [d] 1.5∙10 -3 mPa∙s [e]
CORRENTE ELETTRICA, LEGGE DI OHM, RESISTENZE IN SERIE E IN PARALLELO E LEGGI DI KIRCHOFF PER I CIRCUITI In un condensatore la carica Q = C DV che può accumulare.
Capitolo 5 La legge di Ohm e l’effetto Joule
L'ELETTRICITA'.
Andrea Ventura Scuola Estiva di Fisica 2014
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce un flusso di particelle cariche, cioè una corrente elettrica. Per convenzione,
La corrente elettrica.
La corrente elettrica continua
Energia e Potenza elettrica
Misure elettriche ed elettroniche
1 ampere = C s–1 = C (1.6 10–19 C/elettrone) s–1 =
La corrente elettrica Il fenomeno della corrente elettrica può essere assimilato ad un fenomeno idraulico. Consideriamo due serbatoi A e B posti ad.
I volti che hanno segnato il mondo della scienza:
Elettricità Prof.ssa Angela Grassi
Grandezze elettriche.
Circuiti elettrici - Componenti reali
Elettricità, elettrotecnica, elettronica
Le sue forme, le sue fonti
La carica elettrica Tutto ciò che ha a che fare con l’elettricità trae origine dalla materia chiamata carica elettrica. La carica elettrica si misura con.
In un conduttore sono presenti degli elettroni liberi di muoversi al suo interno. Tale movimento è dovuto all’agitazione termica delle particelle. Se.
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
Corrente elettrica Cariche in movimento e legge di Ohm.
Resistenze in serie F. Bevacqua-S. Alati e in parallelo.
Ing Giuseppe Cisci Trasduttori di Temperatura.
LA CORRENTE ELETTRICA NEI METALLI. LA CORRENTE ELETTRICA Una corrente elettrica è un movimento ordinato di particelle dotate di carica elettrica. Nei.
Transcript della presentazione:

Grandezze elettriche

La corrente elettrica L’intensità di corrente elettrica è data dalla quantità di carica che attraversa la sezione di un conduttore in un secondo La corrente elettrica si misura in Ampere ING. G. Cisci 2013

Sezione del conduttore Cariche elettriche ING. G. Cisci 2013

La tensione Spesso chiamata anche Differenza di Potenziale (d.d.p.), o Voltaggio È la causa del movimento delle cariche elettriche La ddp tra due punti è l’energia che occorre spendere per spostare una carica elettrica da un punto all’altro. La tensione si misura in Volt ING. G. Cisci 2013

Differenza di Potenziale Le cariche elettriche si muovono spontaneamente da punti a potenziale più alto a punti a potenziale più basso Differenza di potenziale ING. G. Cisci 2013

Differenza di Potenziale Il generatore ha il compito di riportare le cariche ad un potenziale più alto G Differenza di potenziale ING. G. Cisci 2013

Generatori Generatore di tensione continua Generatore di tensione alternata sinusoidale ING. G. Cisci 2013

Generatore ideale di tensione Generatore ideale di corrente ING. G. Cisci 2013

Il circuito elettrico Formato da Generatori Conduttori Utilizzatori G ING. G. Cisci 2013

utilizzatori Hanno il compito di convertire l’energia elettrica in altre forme di energia Esempi: Le lampade convertono energia elettrica in energia luminosa Le stufe, i forni,le piastre ecc. in calore I motori, in energia meccanica Gli accumulatori in energia chimica ING. G. Cisci 2013

La legge di OHM Amperometro A V Generatore variabile Voltmetro Conduttore ING. G. Cisci 2013

Eseguo la misura modificando la tensione fornita dal generatore e leggendo, di volta in volta, la corrente che attraversa il conduttore ING. G. Cisci 2013

V I 10 V 2 A 20 V 4 A 30 V 6 A 35 V 7 A 40 V 8 A 60 V 12 A ING. G. Cisci 2013

Legge di OHM In un conduttore, il rapporto tra la tensione ai suoi capi e la corrente che lo attraversa è costante. Tale rapporto prende il nome di resistenza La resistenza indica quanto un conduttore si oppone al passaggio della corrente La resistenza si misura in Ω (Ohm) ING. G. Cisci 2013

II legge di OHM Unendo due conduttori uno di seguito all’altro, è intuitivo che la resistenza complessiva aumenti rispetto al conduttore singolo. Resistenza e lunghezza di un conduttore sono quindi direttamente proporzionali R  l ING. G. Cisci 2013

R  1/S Quindi la resistenza è inversamente proporzionale alla sezione Se si confrontano due conduttori di diversa sezione si può ragionevolmente supporre che la corrente passi più facilmente in quello con sezione maggiore Questo significa che la sua resistenza è più bassa Quindi la resistenza è inversamente proporzionale alla sezione R  1/S ING. G. Cisci 2013

La resistenza dipende poi dal materiale con il quale è realizzato il conduttore. La dipendenza viene espressa mediante un parametro chiamato resistività indicato dal simbolo ρ ING. G. Cisci 2013

Resistività di alcuni conduttori Argento 1,62 × 10-2 Rame 1,69 × 10-2 Oro 2,35 × 10-2 Alluminio 2,75 × 10-2 Tungsteno 5,25 × 10-2 Ferro 9,68 × 10-2 Platino 10,6 × 10-2 Espresse in Ω·mm2/m alla temperatura di 20°C ING. G. Cisci 2013

II legge di OHM L = lunghezza del conduttore (espressa in m) Mettendo insieme le considerazioni precedenti Dove ρ = resistività del materiale (espressa in Ω·mm2/m) L = lunghezza del conduttore (espressa in m) S = sezione del conduttore (espressa in mm2) ING. G. Cisci 2013

Resistenze in serie Due o più resistenze sono dette in serie se sono attraversate dalla stessa corrente È possibile sostituire due o più resistenze in serie sostituendole con una di valore opportuno senza alterare il funzionamento del circuito Tale resistenza si chiama resistenza equivalente ed è data dalla somma delle resistenze in serie R3 R2 R1 I ING. G. Cisci 2013

Partitore di tensione Due o più resistenze collegate in serie costituiscono un partitore di tensione La tensione ai capi della serie si suddivide infatti ai capi di ciascuna di esse. Per determinare la d.d.p. su una delle resistenze, si moltiplica la tensione totale per la resistenza interessata e si divide per la resistenza della serie R3 R2 R1 Utot U1 U2 U3 ING. G. Cisci 2013

Resistenze in parallelo U R1 R2 R3 Due o più resistenze sono dette in parallelo quando sono sottoposte alla stessa differenza di potenziale La resistenza equivalente, nel caso generale, si trova con la seguente espressione ING. G. Cisci 2013

Resistenze in parallelo U R1 R2 Nel caso si abbiano solo due resistenze in parallelo si può utilizzare la seguente espressione ING. G. Cisci 2013