Metodi Quantitativi per Economia, Finanza e Management Lezione n°4

Slides:



Advertisements
Presentazioni simili
- le Medie la Moda la Mediana
Advertisements

Il senso dei dati: Elaborazione e Interpretazione.
____________________
QUANTILI.
Indici di dispersione Quantili: sono misure di posizione non centrale che dividono la serie ordinata di dati in un certo numero di parti di uguale numerosità.
1 la competenza alfabetica della popolazione italiana CEDE distribuzione percentuale per livelli.
Le misure di tendenza centrale informano sul centro della distribuzione 4 - Le medie a.a Le medie a.a
Variabilità Variabilità: inevitabile fluttuazione dei fenomeni naturali, fisici, sociali ecc le indicazioni fornite dalle misure di tendenza centrale (media.
Sintesi dei dati La sintesi dei dati comporta una perdita di informazioni, deve quindi essere privilegiato l’indice di sintesi che minimizza la perdita.
Lez. 3 - Gli Indici di VARIABILITA’
Analisi preliminari dei dati
Descrizione dei dati Metodi di descrizione dei dati
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Analisi Univariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°3.
Questionario - Analisi Univariata e Bivariata
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Offerta e Domanda di mercato
COSA VUOL DIRE FARE STATISTICA
Misure di posizione Gli indici di posizione servono per individuare la tendenza centrale del fenomeno studiato. I più utilizzati sono: Moda Mediana Quartili,
Misure di dispersione Giovanni Filatrella
Statistica sociale Modulo A
LEZIONI DI STATISTICA MEDICA
Lezione 4 Probabilità.
Nicola Paparella, Università degli Studi, Lecce, aprile 2006 Pedagogia sperimentale Note ed appunti Corso di base / 5
Pedagogia sperimentale
Mediana Punto che lascia il 50 % dei casi alla sua destra e il 50% dei casi alla sua sinistra Esempio: 8, 9, 10, 11, 15, 6, 7 Mettere le misure in ordine.
1 Y Modello di regressione semplice Supponiamo che una variabile Y sia funzione lineare di unaltra variabile X, con parametri incogniti 1 e 2 che vogliamo.
Statistica descrittiva
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3 Le distribuzioni di frequenza e le misure di sintesi univariate.
Esercizio 1: La seguente distribuzione riporta i punteggi di un test sullo spettro autistico misurato su un gruppo di bambini: a)Costruire una tabella.
Introduzione Statistica descrittiva Si occupa dellanalisi dei dati osservati. Si basa su indicatori statistici (di posizione, di variazione, di concentrazione,
Compito 1: La seguente distribuzione riporta il numero di errori di un gruppo di bambini con ritardo mentale in un test di lettura”: Costruire una tabella.
Esercitazione 1) La seguente distribuzione riporta i punteggi di ansia misurata su studenti di psicometria:
Esercizio 1 La seguente distribuzione riporta i punteggi di ansia misurata prima dell’esame di psicometria: Costruire una tabella di frequenza, indicando:
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
Simone Mosca & Daniele Zucchini 4Bi.
La Variabilità e La Concentrazione
Sintesi della lezione Il concetto di variabilità Campo di variazione Differenza interquartile La varianza La deviazione standard Scostamenti medi VARIABILITA’
Pippo.
Compito 1: La seguente distribuzione riporta i punteggi di “apertura mentale” su individui con disturbo ossessivo compulsivo: Costruire una tabella di.
Completiamo i grafici Diagramma logaritmico: variante del diagramma cartesiano; si usa se ci sono valori delle y molto piccoli e molto grandi (nessuna.
Lez. 3 - Gli Indici di VARIABILITA’
Teoria della probabilità
Esercizio Data la seguente distribuzione di punteggi ad un questionario sul disturbo “ossessivo-compulsivo” di personalità: a)Costruire la tabella di frequenza,
Esercizio 1: La seguente distribuzione riporta i punteggi di un test sullo spettro autistico misurato su un gruppo di bambini: a)Costruire una tabella.
Statistica La statistica è
Analisi Univariata & Esercizi
Compito 1: 1) La seguente distribuzione riporta i punteggi di depressione su individui con disturbo post- traumatico da stress: a)Costruire.
Gli indici di dispersione
Esercizio 1 La seguente distribuzione indica i punteggi di stress su un gruppo di metalmeccanici: a)Costruire la tabella di frequenza indicando la frequenza,
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3.
COSA VUOL DIRE FARE STATISTICA
Accenni di analisi monovariata e bivariata
Strumenti statistici in Excell
Corso di Analisi Statistica per le Imprese Indici di variabilita’ ed eterogeneita’ Prof. L. Neri a.a
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4 Analisi Univariata.
Elementi di statistica descrittiva
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
Metodologia della ricerca e analisi dei dati in (psico)linguistica 23 Giugno 2015 Statistica descrittiva
ANALISI E INTERPRETAZIONE DATI
STATISTICHE DESCRITTIVE
1 Statistica descrittiva 2. Sintetizzare i dati con degli indici Come descrivere una variabile in un insieme di osservazioni 1. Utilizzare rappresentazioni.
INDICATORI DI TENDENZA CENTRALE. Consentono di sintetizzare un insieme di misure tramite un unico valore “rappresentativo”  indice che riassume o descrive.
Quantitative Market Research Set-up Protocol
Indici di variabilità Gli indici di variabilità misurano
Quantitative Market Research Set-up Protocol
Analisi Univariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°3.
Transcript della presentazione:

Metodi Quantitativi per Economia, Finanza e Management Lezione n°4

Misure di Tendenza Non Centrale I Quartili dividono la sequenza ordinata dei dati in 4 segmenti contenenti lo stesso numero di valori 25% 25% 25% 25% Q1 Q2 Q3 Il primo quartile, Q1, è il valore per il quale 25% delle osservazioni sono minori e 75% sono maggiori di esso Q2 coincide con la mediana (50% sono minori, 50% sono maggiori) Solo 25% delle osservazioni sono maggiori del terzo quartile

Differenza Interquartile Box Plot Mediana (Q2) X X Q1 Q3 massimo minimo 25% 25% 25% 25% 12 30 45 57 70 Differenza Interquartile 57 – 30 = 27 OUTLIERS: Q1 - 1,5 * Differenza interquartile Q3 + 1,5 * Differenza interquartile

Misure di Variabilità Variabilità Campo di Variazione Differenza Interquartile Varianza Scarto Quadratico Medio Coefficiente di Variazione Le misure di variabilità forniscono informazioni sulla dispersione o variabilità dei valori. Stesso centro, diversa variabilità

Campo di variazione = Xmassimo – Xminimo La più semplice misura di variabilità Differenza tra il massimo e il minimo dei valori osservati: Campo di variazione = Xmassimo – Xminimo Esempio: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Campo di Variazione = 14 - 1 = 13

Campo di Variazione Ignora il modo in cui i dati sono distribuiti Sensibile agli outlier 7 8 9 10 11 12 7 8 9 10 11 12 Campo di Var. = 12 - 7 = 5 Campo di Var. = 12 - 7 = 5 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 Campo di Var. = 5 - 1 = 4 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120 Campo di Var = 120 - 1 = 119

Differenza Interquartile Possiamo eliminare il problema degli outlier usando la differenza interquartile Elimina i valori osservati più alti e più bassi e calcola il campo di variazione del 50% centrale dei dati Differenza Interquartile = 3o quartile – 1o quartile IQR = Q3 – Q1

Varianza Media dei quadrati delle differenze fra ciascuna osservazione e la media Varianza della Popolazione: dove = media della popolazione N = dimensione della popolazione xi = iimo valore della variabile X

Scarto Quadratico Medio Misura di variabilità comunemente usata Mostra la variabilità rispetto alla media Ha la stessa unità di misura dei dati originali Scarto Quadratico Medio della Popolazione:

Scarto Quadratico Medio Scarto quadratico medio piccolo Scarto quadratico medio grande

Scarto Quadratico Medio Dati A Media = 15.5 s = 3.338 11 12 13 14 15 16 17 18 19 20 21 Dati B Media = 15.5 s = 0.926 11 12 13 14 15 16 17 18 19 20 21 Dati C Media = 15.5 s = 4.570 11 12 13 14 15 16 17 18 19 20 21

Scarto Quadratico Medio Viene calcolato usando tutti i valori nel set di dati Valori lontani dalla media hanno più peso (poichè si usa il quadrato delle deviazioni dalla media) Le stesse considerazioni valgono anche per il calcolo della Varianza

Coefficiente di Variazione Misura la variabilità relativa Sempre in percentuale (%) Mostra la variabilità relativa rispetto alla media Può essere usato per confrontare due o più set di dati misurati con unità di misura diversa

Coefficiente di Variazione Azione A: Prezzo medio scorso anno = $50 Scarto Quadratico Medio = $5 Azione B: Prezzo medio scorso anno = $100 Entrambe le azioni hanno lo stesso scarto quadratico medio, ma l’azione B è meno variabile rispetto al suo prezzo

Forma della Distribuzione La forma della distribuzione si dice simmetrica se le osservazioni sono bilanciate, o distribuite in modo approssimativamente regolare attorno al centro.

Forma della Distribuzione La forma della distribuzione è detta asimmetrica se le osservazioni non sono distribuite in modo simmetrico rispetto al centro. Una distribuzione con asimmetria positiva (obliqua a destra) ha una coda che si estende a destra, nella direzione dei valori positivi. Una distribuzione con asimmetria negativa (obliqua a sinistra) ha una coda che si estende a sinistra, nella direzione dei valori negativi.

Misure di Forma della Distribuzione Descrive come i dati sono distribuiti Misure della forma Simmetrica o asimmetrica Obliqua a sinistra Simmetrica Obliqua a destra Media < Mediana Media = Mediana Mediana < Media

Misure di Forma della Distribuzione Skewness: indice che informa circa il grado di simmetria o asimmetria di una distribuzione. γ=0 ditribuzione simmetrica; γ<0 asimmetria negativa (mediana>media); γ>0 asimmetria positiva (mediana<media). Kurtosis: indice che permette di verificare se i dati seguono una distribuzione di tipo Normale (simmetrica). β=3 se la distribuzione è “Normale”; β<3 se la distribuzione è iponormale (rispetto alla distribuzione di una Normale ha densità di frequenza minore per valori molto distanti dalla media); β>3 se la distribuzione è ipernormale (rispetto alla distribuzione di una Normale ha densità di frequenza maggiore per i valori molto distanti dalla media).

IMPORTO NETTO UNITARIO Basic Statistical Measures Location Variability Mean 106.1410 Std Deviation 81.01306 Median 103.2900 Variance 6563 Mode 0.0000 Range 523.69000   Interquartile Range 118.62500

IMPORTO NETTO UNITARIO

IMPORTO NETTO UNITARIO

IMPORTO NETTO UNITARIO Basic Statistical Measures Location Variability Mean 138.0247 Std Deviation 64.29397 Median 129.1100 Variance 4134 Mode 149.0000 Range 521.77000   Interquartile Range 82.62000

Analisi di Concentrazione Per caratteri quantitativi trasferibili Equidistribuzione: Max concentrazione: 1. Ordinare le osservazioni 2. Calcolare le quantità:

20% 50% 60% 90% Analisi di Concentrazione CURVA DI CONCENTRAZIONE REDD. >=0 QI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FI 20% 50% 60% 90% 1

20% 40% Analisi di Concentrazione CURVA DI CONCENTRAZIONE REDD. < 0 QI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FI 20% 40% 1

Statistica descrittiva bivariata Indaga la relazione tra due variabili misurate. Si distingue rispetto alla tipologia delle variabili indagate: var. qualitative/quantitative discrete: tavole di contingenza (o a doppia entrata) var. quantitative: analisi di correlazione lineare una var. qualitativa e una quantitativa: confronto tra le medie

Tavole di contingenza Sono tabelle a doppia entrata; i valori riportati all’interno della tabella sono le frequenze congiunte assolute, e la loro somma è pari al totale dei casi osservati. Dalla tabella si possono ricavare inoltre le distribuzioni marginali, sommando per riga e per colonna le frequenze congiunte; le frequenze relative congiunte, pari al rapporto tra le frequenze assolute congiunte e il totale dei casi osservati.

Tavole di contingenza Dalle tabelle di contingenza si possono ricavare ulteriori distribuzioni unidimensionali : Frequenze subordinate ovvero la frequenza di osservare il carattere x dato il carattere y e viceversa. Formalmente: P y|x (xi,yj) = P (xi,yj) / P x(xi) P x|y (xi,yj) = P (xi,yj) / P y(yj) Indipendenza statistica se al variare di X le distribuzioni subordinate (Y|X)= xi sono tutte uguali tra loro,si può concludere che la distribuzione del carattere Y non dipende da X. Nel caso di indipendenza statistica, la frequenza relativa congiunta è pari al prodotto delle marginali corrispondenti P(xi,yj)=Px (xi)Py(yj) L’indipendenza stat. è un concetto simmetrico: se vale per X, vale anche per Y. Se si verifica, vuol dire che l’analisi bivariata di X (Y) non dà informazioni aggiuntive rispetto all’analisi univariata.

Tavole di contingenza Perfetta dipendenza unilaterale ad ogni valore di X corrisponde un solo valore di Y, ma non è detto che si verifichi il contrario. In generale, quando il numero di colonne (valori assunti dalla Y) è inferiore al numero di righe (valori assunti dalla X) non è mai possibile che X dipenda perfettamente da Y. Perfetta dipendenza bilaterale ad ogni valore di X corrisponde un solo valore di Y e viceversa; la perfetta dipendenza bilaterale si può avere allora solo per matrici quadrate.

χ²=N Σ Σ [P(xi,yj)-Px(xi) y(yj)] ²/ Px(xi) Py(yj) Indici di connessione Nella realtà è difficile che si verifichi la condizione di indipendenza statistica. Pertanto è utile disporre di indici che misurino il grado di connessione tra le variabili. χ² (chi-quadrato) assume valore nullo se i fenomeni X e Y sono indipendenti. Risente del numero delle osservazioni effettuate quindi al crescere di N, l’indice tende a crescere. χ²=N Σ Σ [P(xi,yj)-Px(xi) y(yj)] ²/ Px(xi) Py(yj)

Indici di connessione Un indice più efficace (perchè relativo, e dunque non risente del numero di osservazioni) è l’indice di Cramer V, basato sul χ². assume valori compresi tra 0 e 1: 0 nel caso di indipendenza statistica, 1 nel caso di perfetta dipendenza almeno unilaterale e tende a crescere all’aumentare del grado di dipendenza delle variabili considerate.