Energia libera di Gibbs (G)

Slides:



Advertisements
Presentazioni simili
Studio delle variazioni di energia durante una trasformazione
Advertisements

Spontaneità delle reazioni chimiche ovvero ΔG = ΔH - T ΔS
Reazioni dirette e inverse
TEORIA CINETICA DEI GAS
ΔG = ΔH - T ΔS prof. F.Tottola IPSIA E.Fermi Verona.
Equilibrio chimico Equilibri dinamici Legge azione di massa, Kc, Kp,…
Stati di aggregazione della materia
Cinetica chimica Cinetica e termodinamica Velocità di reazione
CAPACITA’ DI PRODURRE LAVORO O CALORE
Processi spontanei ed entropia
PON le scienze in … gara a.s. 2012/13 Liceo statale E.P.Fonseca – Napoli Esperto prof. C. Formica Tutor prof. L. Meduri.
Termodinamica le leggi più generali sulle trasformazioni (comprese le reazioni) 1° principio: conservazione dell'energia 2° principio: aumento del disordine.
TERMODINAMICA.
TERMODINAMICA.
EQUILIBRIO CHIMICO.
16. La Termodinamica Il Primo Principio della Termodinamica
La termodinamica chimica si occupa della differenza di energia tra prodotti e reagenti di una reazione, identificati anche come stato finale e stato iniziale.
Lenergia interna di un gas ideale dipende solo dalla temperatura. Non ci sono interazioni tra le particelle. P V a b a b a b a b AB Espansione isoterma.
Il lavoro PV si esprime in l · atm; 1 l · atm = 24.2 cal = 101 J
La termodinamica si occupa di stato finale e stato iniziale. La cinetica si occupa del meccanismo, a livello atomico. Da misure di velocità si può arrivare.
Lezione VII ENERGIA DI GIBBS Termodinamica chimica a.a Termodinamica chimica a.a
Lezione VI ENTROPIA Termodinamica chimica a.a Termodinamica chimica a.a
Lezione X EQUILIBRIO Termodinamica chimica a.a Termodinamica chimica a.a
LA VELOCITA’ DELLE REAZIONI CHIMICHE
Cinetica chimica Cinetica chimica.
Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE EQUILIBRIO CHIMICO Una reazione chimica si dice completa (o "che va a completamento")
CARATTERISTICHE FONDAMENTALI DELL’EQUILIBRIO DINAMICO:
ENTROPIA, ENERGIA LIBERA ED EQUILIBRIO
C è la costante di Boltzmann = k = R/N
Le reazioni spontanee Spesso si associa il concetto di reazione spontanea ad una reazione che produce calore: certamente una reazione di combustione avviene.
Secondo principio per una reazione a pressione costante S totale= S ambiente + S reazione= - H/T + S reazione Il disordine dellambiente è incrementato.
Termodinamica.
Equilibrio chimico in fase gassosa
Equilibrio chimico N2 + 3 H2  2NH3
Equilibrio chimico in fase gassosa
Ambiente: il resto dell’universo che non fa parte del sistema
Reazioni di ossido-riduzione e elettrochimica
Ossidante acquista e- dal riducente che perde e-
PROCESSI SPONTANEI Tendono a verificarsi senza l’intervento di una azione esterna. Fe 150°C T amb = 25°C Fe 25°C T amb = 25°C Trasf. NON spontanea Trasf.
Sistema, Ambiente e Universo
Studio delle variazioni di energia durante una trasformazione
Stati di aggregazione della materia
Il principio di Le Chatelier-Braun
Perché le cose accadono? Cos’è la spontaneità? E’ la capacità di un processo di avvenire «naturalmente» senza interventi esterni In termodinamica, un processo.
cC + dD reaz. reversibile vinv Reagenti (prodotti) Prodotti (reagenti)
Sistema e ambiente Si definiscono “sistemi chimici” le sostanze (reagenti e prodotti) che partecipano alle trasformazioni fisiche e chimiche della materia.
Transizioni di stato.
Idea 7 Spontaneità delle reazioni Principio di Le Chatelier.
EQUILIBRIO CHIMICO.
Termodinamica: studio dei trasferimenti di energia Termodinamica chimica: 1. variazione di energia associata ad una trasformazione 2. spontaneità di una.
Cinetica chimica Cinetica e termodinamica Velocità di reazione
Termochimica (Cap. 14).
I gas.
18. Un campione di naftalene solido, C10H8, del peso di 0
Termodinamica U H S G Energia interna Entalpia Entropia
Stati di aggregazione della materia
INTRODUZIONE AL METABOLISMO Il metabolismo rappresenta l'insieme dei cambiamenti chimici che convertono le sostanze nutrienti, ossia la materia prima necessaria.
Sistema, Ambiente e Universo
Paolo Pistarà Principi di Chimica Moderna © Istituto Italiano Edizioni Atlas 2011 Copertina 1.
Funzioni di Stato Lo stato di un sistema viene definito in modo completo ed univoco da grandezze definite come variabili di stato: si definisce uno stato.
Studia essenzialmente le trasformazioni dell’energia durante una reazione chimica e consente altresì di prevederne lo svolgimento. TERMOCHIMICA  Scambio.
P ERCHÉ DUE SOSTANZE REAGISCONO FRA DI LORO ? “Perchè hanno affinità chimica fra loro..” Ma come faccio a dirlo? Come stabilisco i prodotti? Occorre una.
La spontaneità è la capacità di un processo di avvenire senza interventi esterni Accade “naturalmente” Termodinamica: un processo è spontaneo se avviene.
Equilibrio Omogeneo ed Etereogeneo. Legge di azione di massa Per qualunque reazione aA + bB cC + dD K = [C] c [D] d [A] a [B] b K è la costante di equilibrio.
Valitutti, Falasca, Amadio
Transcript della presentazione:

Energia libera di Gibbs (G) In genere: ΔStot può essere calcolata da informazioni che si riferiscono solo al sistema??? Sì!! Energia libera di Gibbs (G) a pressione costante

In un processo a T costante valutiamo il ΔG: Per analogia con: Sono spontanei i processi con ΔS(tot.) >0 e quindi esssendo la T assoluta sempre >0, i processi spontanei sono accompagnati da una diminuizione di energia libera (ΔG<0, NUOVO CRITERIO di SPONTANEITA’) Per il chimico è molto più pratica la funzione energia libera perché è riferita interamente al sistema sotto osservazione e non all’ambiente.

IL SISTEMA TENDE A RAGGIUNGERE IL VALORE MINIMO DI G (una sorta di energia potenziale chimica) Il valore minimo di G non è rappresentato nè dalla situazione di reagenti puri né da quella di prodotti puri ma da una miscela reagenti prodotti la cui composizione soddisfa la Kc!!!

G Reazione che avviene quasi fino al termine avrà il minimo spostato verso i prodotti Avanzamento della reazione da Reagenti a Prodotti G Reazione che non procede quasi per niente avrà il minimo spostato verso i reagenti. Avanzamento della reazione da Reagenti a Prodotti

CONDIZIONI di SPONTANEITA’

In caso di ΔG = 0 il sistema è all’equilibrio, il sistema non evolve in nessuno dei due versi possibili (siamo in condizioni di T e P = K) Immaginiamo una reazione che dai reagenti porta ai prodotti in maniera endotermica con ΔS > 0 ci sarà una temperatura caratteristica al di sotto della quale la reazione non avviene spontaneamente, mentre al di sopra sì. ΔG = ΔH - T ΔS ΔG ΔG > 0 y = q -mx ΔH e ΔS > 0 ΔH e ΔS < 0 ΔG = 0 ΔH > 0 e ΔS < 0 T ΔH < 0 e ΔS > 0 ΔG < 0

Per la reazione: ΔH e ΔS > 0 ΔG < 0 da una certa T in su!!! Infatti il processo di decomposizione termica del Carbonato di calcio è spontaneo solo a partire da 800°C.

ENERGIA LIBERA STANDARD di REAZIONE In condizioni standard ogni specie si trova T di 298 K, alla pressione di 1 atm (se gassosa), o (se in soluzione) alla concentrazione 1M. Data la reazione fatta avvenire in condizioni standard (1 atm e 278 K) si può misurare il ΔH ed il ΔS che in questi casi corrispondono a ΔH° e ΔS°. ΔG° corrisponde alla energia libera standard di reazione ΔG° = ΔH° - TΔS° = -70 KJ (reazione spontanea) Possiamo anche scrivere:

ENERGIA LIBERA STANDARD di FORMAZIONE ΔGf°= energia libera di formazione standard, si riferisce alla formazione di una mole di composto in esame in condizioni standard, a partire dagli elementi nei rispettivi stati standard. Esempi: ΔGf° permette di prevedere la stabilità di un composto rispetto gli elementi costituenti. HI tenderà, in condizioni standard a decomporsi negli elementi che lo costituiscono!!

Il ragionamento fatto per HI vale anche per benzene ed NO2 Il ragionamento fatto per HI vale anche per benzene ed NO2. Tutti questi composti sono detti TERMODINAMICAMENTE INSTABILI Ma la reazione: Non avviene in condizioni standard?!? In realtà dovrebbe avvenire ma la CINETICA di decomposizione è così lenta che in pratica non avviene!!! Tutte le sostanze con comportamento simile a quello del benzene sono dette termodinamicamente instabili ma cineticamente stabili ( o inerti)

Quali sostanze sono termodinamicamente stabili e quali termodinamicamente instabili??? Sempre ovviamente in condizioni standard!!!

REAZIONE GENERICA: SPONTANEITA’ Come vale: ΔH0 = Σ ΔH0f (prodotti) – Σ ΔH0f (reagenti) Si può dimostrare che vale pure: ΔG0 = Σ ΔG0f (prodotti) – Σ ΔG0f (reagenti)

Esempi: Reazione decisamente spontanea!!! Tale reazione è spontanea o no?

RELAZIONE TRA ENERGIA LIBERA e COSTANTE di EQUILIBRIO. Con K costante di equilibrio e Q quoziente di reazione. Applichiamola ad una reazione: In condizioni standard quanto vale Qp ?? Allora:

La precedente relazione è valida per qualsiasi K tabulata: Dimostrare che: ΔG = ΔG° + RT ln Q Dato il ΔG° si può prevedere la spontaneità della reazione per valori diversi di T e di Q Una reazione è all’equilibrio quando ΔG = 0, cioè quando K=Q. Se K<Q il ΔG>0 (la reazione non è spontanea nel verso indicato, ma nel verso opposto) Se K>Q il ΔG<0 ( la reazione è spontanea nel verso indicato)

ΔG = ΔG° + RT ln Q aA + bB cC + dD Esaminando la reazione nel verso reagenti  prodotti, dalla relazione: ΔG = ΔG° + RT ln Q in condizioni standard Q=1: ΔG = ΔG°; se ΔG° fosse negativo vorrebbe dire che, a partire da uno stato in cui tutte le concentrazioni valgono 1M, alla T di 298 K e alla P 1atm, la reazione avrebbe tendenza spontanea a procedere formando prodotti. Sappiamo inoltre che: ΔG0 = Σ ΔG0f (prodotti) – Σ ΔG0f (reagenti) Se ΔG°<0 La relazione può essere letta come: “l’energia libera (potenziale) dei prodotti, in condizioni standard, è minore dell’energia libera (potenziale) dei reagenti, in condizioni standard. Il sistema tenderà spontaneamente ad “andare” verso il minimo valore di energia libera (cioè verso i prodotti)”.