Esame di Analisi Multivariata dei Dati

Slides:



Advertisements
Presentazioni simili
Test delle ipotesi Il test consiste nel formulare una ipotesi (ipotesi nulla) e nel verificare se con i dati a disposizione è possibile rifiutarla o no.
Advertisements

L’Analisi della Varianza ANOVA (ANalysis Of VAriance)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Come organizzare i dati per un'analisi statistica al computer?
METODI STATISTICI PER LO STUDIO DELL’ASSOCIAZIONE TRA DATI QUALITATIVI
Intervalli di confidenza
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Confronto tra 2 campioni Nella pratica è utilissimo confrontare se 2 campioni provengono da popolazioni con la stessa media: Confronti tra produzioni di.
Variabili casuali a più dimensioni
LA STATISTICA By prof. Pietro Rossi.
Analisi dei dati per i disegni ad un fattore
Il modello di analisi dei dati nei disegni within.
Il concetto di misura.
Intervalli di Confidenza
Analisi di covarianza L'analisi di covarianza è un'analisi a metà strada tra l'analisi di varianza e l'analisi di regressione. Nell'analisi di covarianza.
Gli errori nell’analisi statistica
Levels of constraint I vincoli (o livelli di costrizione) sono i condizionamenti impiegati dalla ricerca.
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Metodi Quantitativi per Economia, Finanza e Management Lezione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.
Inferenza statistica per un singolo campione
DIFFERENZA TRA LE MEDIE
Analisi della varianza (a una via)
Appunti di inferenza per farmacisti
Metodi di ricerca in Psicologia
Metodi della ricerca in Psicologia
Corso di biomatematica lezione 10: test di Student e test F
Complementi al Corso di Ecologia - Approfondimenti di statistica
Parte I (introduzione) Taratura degli strumenti (cfr: UNI 4546) Si parla di taratura in regime statico se lo strumento verrà utilizzato soltanto per misurare.
Pedagogia sperimentale
Da studi svolti negli anni ‘50 è emerso che il numero ideale di figli per famiglia è di 3. Nel 1980, ipotizzando una modifica nei costumi e nei modelli.
Analisi della varianza
Il test di ipotesi Cuore della statistica inferenziale!
Verifica delle ipotesi su due campioni di osservazioni
L’Analisi della Varianza (o ANOVA)
Le distribuzioni campionarie
Statistica Che cos’è?.
Unità 7 Test parametrici ☐ Test t di Student ☐ Analisi della varianza ad una via ☐ Confronti multipli.
Cenni teorici. La corrente elettrica dal punto di vista microscopico
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
Analisi Bivariata: Test Statistici
Esame di Analisi Multivariata dei Dati
Esercitazione di Psicometria Rossana Pagano Micol Parolin.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Domande riepilogative per l’esame
Lezione B.10 Regressione e inferenza: il modello lineare
Accenni di analisi monovariata e bivariata
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati Introduzione all’analisi fattoriale.
Corso di Laurea in Scienze e Tecniche psicologiche
Analisi Multivariata dei Dati
L’analisi della varianza
Corso di Laurea in Scienze e tecniche psicologiche
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati General linear model e mixed.
Test basati su due campioni Test Chi - quadro
UNIVERSITA’ DEGLI STUDI DI PERUGIA
Corso di Laurea in Scienze e tecniche psicologiche
Accenni di analisi monovariata e bivariata
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
Dalmine, 26 Maggio 2004 Esercitazioni di Statistica con Matlab Dott. Orietta Nicolis fttp:\ingegneria.unibg.it.
Disegni ad un fattore tra i soggetti. Disegni ad un solo fattore between Quando i livelli del trattamento possono influenzarsi reciprocamente è necessario.
ANALISI E INTERPRETAZIONE DATI
ANALISI DELLA VARIANZA (ANOVA)
Corso di Statistica Applicata C. L. in Tecnologie forestali e ambientali 4 crediti (32 ore) Docente: Lorenzo Marini DAFNAE, Università di Padova
Ipotesi operative TeoriaEsperienza diretta e/o personale Quesito Piano esecutivo Scelta popolazione Scelta strumenti Scelta metodi statistici Discussione.
L’ecologia è oggi sempre più una disciplina che enfatizza lo studio olistico del sistema. Anche se il concetto che l’intero possa essere più della somma.
INTRODUZIONE ALL’ANALISI DELLA VARIANZA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
1 Corso di Laurea in Scienze e Tecniche psicologiche Esame di Psicometria Il T-Test A cura di Matteo Forgiarini.
Transcript della presentazione:

Esame di Analisi Multivariata dei Dati Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati L’anova fattoriale between Mercoledì 23 ottobre 2013 A cura di Matteo Forgiarini

Il test anova L’anova between Spesso per scopi di ricerca siamo interessati a stabilire se due popolazioni indipendenti in media mostrano valori statisticamente diversi per la stessa variabile osservata – misurata su scala ordinale. Nelle precedenti analisi abbiamo affrontato e risolto questo problema mediante il t-test: abbiamo confrontato le due medie osservate sui due differenti campioni e analizzando la significatività del valore t sperimentale, abbiamo potuto decidere se accettare o rifiutare l’ipotesi nulla di uguaglianza delle due medie. Ma... Se si volessero confrontare contemporaneamente i valori medi di più di due campioni? Ad esempio, in riferimento al file “competenze.sav”, è possibile domandarsi se i soggetti nati prima del 1948, tra il 1948 e il 1954 e i dopo il 1954, abbiano in media la stessa pressione massima. È un tipo di domanda frequente in molte ricerche: di fatto stiamo cercando di capire se il fattore “età” influisce sulla variabile “pressione massima”; ovvero se nelle 3 differenti fasce di età i soggetti hanno in media la stessa pressione o se le medie differiscono significativamente. In questo caso non è possibile utilizzare i modelli di regressione perché la V.I. non è quantitativa. Per rispondere a questo tipo di domande occorre utilizzare il test anova.

Il test anova Occorre utilizzare l’anova ogni volta che: L’anova between Occorre utilizzare l’anova ogni volta che: Si vuole sapere se una V.D. (misurata su scala a rapporto o a intervallo) presenta valori medi uguali nei diversi livelli di un a V.I. (misurata su scala qualsiasi). Cioè: Si vuole sapere se una variabile categoriale influisce su una variabile quantitativa. Ogni livello della V.I. forma un gruppo di soggetti: dunque ogni livello della V.I. ha un proprio valore medio della V.D. La V.I. ha più di due livelli: dunque occorre confrontare contemporaneamente più di due medie. Se la V.I. ha 2 livelli, è indifferente utilizzare l’anova o il t-test (cfr. diapositive successive). Indicando con µ1, µ2, … µk le medie della V.D. nei k livelli della V.I., l’ipotesi nulla del test anova risulta: H0: µ1= µ2=…= µk H1: µ i≠ µj per almeno una coppia di livelli della V.I. (i e j indicano 2 generici livelli della V.I.)

Il t-test e l’anova L’anova between Se la V.I. presenta due livelli, il t-test e l’anova permettono di rispondere allo stesso tipo di domanda, infatti: In riferimento al file “competenze.sav” ipotizziamo di dividere in due grandi classi di età (di uguale numerosità) i soggetti e di chiederci se i soggetti giovani in media hanno la stessa pressione massima dei soggetti più anziani. Abbiamo selezionato l’opzione per ottenere il valore – ovvero la mediana - della variabile “anno di nascita” che divide il campione totale in due sotto-campioni di uguale numerosità. Possiamo quindi costruire una nuova variabile per eseguire il t-test e l’anova.

Il t-test e l’anova L’anova between Con “ricodifica in una nuova variabile” a partire dalla variabile “nascita” creiamo la variabile “nasc_2f”, creiamo cioè una variabile che indica le due fasce di età dei soggetti: la nuova variabile assume valore 1 per soggetti nati prima del 1951 e assume valore 2 per tutti gli altri soggetti più giovani. Ipotizziamo di volere sapere se la variabile pressione sanguigna assume in media lo stesso valore nei due livelli della variabile nasc_2f. Ovvero ci stiamo chiedendo se la variabile età influisce sulla variabile pressione sanguigna. Per rispondere a questa domanda possiamo usare sia il t-test sia l’anova, perché? Perché stiamo confrontando contemporaneamente i valori medi di 2 livelli della V.I. H0: µ1= µ2 H1: µ1≠ µ2

Il t-test e l’anova L’anova between Eseguiamo il t-test per campioni indipendenti utilizzando come variabile di gruppo “nasc_2f” e come variabile dipendente “pressione massima”. Il t-test risulta significativo, è possibile rifiutare l’ipotesi nulla e concludere che la pressione sanguigna nelle persone “più giovani” è significativamente maggiore che negli “anziani”.

Il t-test e l’anova L’anova between Il test dell’anova risulta significativo (p-value<0,05): come per il t-test, possiamo concludere che in media la pressione sanguigna nei soggetti “più giovani” è statisticamente maggiore rispetto ai soggetti “più anziani”. È interessante notare che il livello di significatività ottenuto è il medesimo che abbiamo ottenuto con il t-test. È importante notare però che l’anova si basa sul test F: infatti vengono confrontate le varianze tra i gruppi (between) ed entro i gruppi (within).

L’anova between L’anova between Come ipotizzato all’inizio, dividiamo ora i soggetti in tre grandi fasce di età di numerosità omogenea. Dagli output notiamo che un terzo dei soggetti è nato prima del 1948, un terzo tra il ’48 e il ’54 e il restante 33% è nato dopo il 1954.

L’anova between L’anova between Possiamo quindi costruire una nuova variabile “nasc_3f” che divide i soggetti in tre grandi fasce di età e che assume: Valore 1 se i soggetti sono nati prima del 1948, Valore 2 se i soggetti sono nati dal 1948 al 1954 Valore 3 se i soggetti sono nati dopo il 1954. Possiamo quindi eseguire il test dell’anova e confrontare le medie della variabile “pressione massima” all’interno dei tre livelli di età che abbiamo creato.

L’anova between H0: µ1= µ2= µ3 H1: esiste almeno una coppia di livelli in cui le medie della “pressione sanguigna” hanno una differenza statisticamente significativa. Il test risulta significativo (p-value<0,05). Possiamo rifiutare l’ipotesi nulla e concludere che la variabile età ha influenza sulla variablile pressione sanguigna: in altri termini esiste una coppia di livelli della V.I. per i quali le due medie di gruppo hanno una differenza significativa. Ma... Con 3 livelli della V.I. esistono 3 coppie di medie, qual è la coppia che rende significativo l’anova? Ne esiste più di una? Andiamo a scoprirlo... Gradi di libertà Varianza within Varianza between

L’anova between L’anova between Per capire quale coppia di fasce di età ha reso significativo l’anova, occorre eseguire i test post hoc. I test post hoc confrontano contemporaneamente le n*(n-1)/2 coppie di medie della V.D. (con n pari al numero di livelli della V.I.). Ma... Il confronto contemporaneo altera il livello di significatività dei test: il livello alfa (generalmente pari a 0,05) viene “gonfiato” rendendo quindi più elevato il rischio di commettere l’errore di I tipo. Occorre quindi mettere in atto strategie che permettano di controllare il valore di alfa: negli esempi proposti verrà usata la correzione di Tukey. I problemi che si incontrano confrontando contemporaneamente più di 2 medie, sono gli stessi problemi che impediscono di usare il t-test quando la V.I. ha più di 2 livelli: anche in questo caso il livello alfa si gonfierebbe e aumenterebbe dunque il rischio di commettere l’errore di I tipo.

L’anova between L’anova between Notiamo che la media 2 risulta significativamente diversa dalla media 3. Gli scarti tra media 1 e media 2 e tra media 1 e 3 non risultano invece significativi. Dagli output possiamo notare che il test anova è risultato significativo poiché una coppia di medie presenta uno scarto statisticamente significativo e rende quindi falsa l’ipotesi nulla di uguaglianza delle 3 medie.

Stiamo testando un anova between fattoriale 2X2. L’anova between fattoriale L’anova between Oltre alle applicazioni fino ad ora affrontate, l’anova permette di rispondere a domande più complesse: infatti è possibile inserire contemporaneamente più di un avariabile indipendente. Ovvero... È possibile eseguire l’anova su disegni fattoriali tramite i quali viene testata, oltre agli effetti principali dei singoli fattori sulla variabile dipendente, anche l’interazione tra i fattori stessi. Infatti se sulla variabile dipendente agiscono 2 fattori contemporaneamente è possibile che essi interagiscano tra loro e che l’effetto di un fattore sulla variabile dipendente sia “modulato” dall’altro fattore, ovvero è possibile che l’effetto del fattore 1 assuma valori differenti nei diversi livelli del fattore 2. Ipotizziamo di testare l’ipotesi che la pressione sanguigna sia influenzata contemporaneamente dal sesso dei soggetti (livello1=femmina;livello2=maschio) e dall’essere fumatori o no dei soggetti stessi. Stiamo testando un anova between fattoriale 2X2.

L’anova between fattoriale Per testare i modelli anova fattoriali, occorre scegliere il modello lineare generalizzato univariato; nei fattori fissi, inseriamo il “genere” e la variabile “fuma”; inoltre l’analisi dei grafici risulta interessante e utile alla comprensione: selezioniamo “plots” e inseriamo i due fattori per ottenere due diverse linee; infine “aggiungiamo” il grafico desiderato.

L’anova between fattoriale Effetti principali Interazione Testando un modello fattoriale con due variabili indipendenti verranno eseguiti 3 test f: un test per l’effetto principale del fattore 1, un test per l’effetto principale del fattore 2 e un test sull’interazione tra i due fattori. Dall’analisi degli output, possiamo notare che gli effetti principali dei due fattori risultano significativi (p-value<0,05): la media della pressione sanguigna dei maschi risulta statisticamente diversa da quella delle femmine; similmente i non fumatori hanno una pressione media differente dai fumatori. Risulta interessante notare che l’interazione tra i fattori risulta non significativa: i due fattori in modo indipendente hanno influenza sulla V.D., ma l’effetto di ogni fattore non varia nei diversi livelli dell’altro fattore: il fattore “genere” influisce in ugual misura per i fumatori e per i non fumatori; similmente è possibile concludere che il fattore “fuma” influisce sulla V.D. con la stessa forza in modo indipendente dal genere dei soggetti.

L’anova between fattoriale È possibile notare la mancanza di interferenza tra i fattori anche osservando il grafico che spss ha prodotto: le linee sono quasi parallele: infatti la riduzione di pressione nei soggetti non fumatori ha quasi la stessa entità per i maschi e per le femmine. Dicendo che le linee sono “quasi” parallele, considerando che l’interazione non risulta significativa, affermiamo che il “quasi” identifica una differenza tanto piccola da non rendere significativo l’effetto di interazione.

L’anova between fattoriale Analizziamo ora un modello anova fattoriale che permetta di capire se la pressione sanguigna (V.D.) è influenzata dal genere dei soggetti (fattore 1) e contemporaneamente dalla residenza in diverse città lombarde (Bergamo, Milano, Cremona e Varese) (fattore 2). Dall’analisi degli output, notiamo che il fattore genere risulta significativo (p-value<0,05); il fattore “città” risulta invece non significativo (p-value>0,05): possiamo quindi concludere che la pressione sanguigna dei soggetti non è influenzata in modo significativo dai differenti stili di vita delle 4 città lombarde.. Contemporaneamente la pressione dei soggetti maschi risulta statisticamente diversa da quella dei soggetti femmine. Ma... Notiamo che l’interazione tra i due fattori risulta significativa (p-value<0,05): possiamo quindi concludere che il fattore “genere” influenza la pressione sanguigna in modo differente nelle 4 città. Esaminiamo il grafico...

L’anova between fattoriale Le quattro rette non risultano parallele: la riduzione media della pressione sanguigna delle femmine rispetto ai maschi non è omogenea nelle 4 città lombarde considerate. In particolare a Milano si può notare che le femmine hanno in media una pressione maggiore dei soggetti maschi.