VIPIX, pSuperB, (SuperB) Atlas/FTK M. Villa 04/11/2010
VIPIX ( ) Sviluppo di sensori a pixel in integrazione verticale –High bandwidth –High rate (100 MHz/cm 2 ) –Data push –Time identification 100 ns –Spatial resolution 12 um –Low budget material (<<1 Xo) Caratterizzazione dei sensori su fascio –Trigger/DAQ –Memorie associative
MAPS 2DHybrid 2DMAPS 3DHybrid 3D AREOAPSEL3D, 4D APSEL3D_T C SORTEX FE4D32x128 SQUARE 3DMAPX3DHPX Readout architecture core version Sensor Technology Mixing interdetto Nomi Indicativi prossime sottomis- sioni Caratteristiche ed innovazioni introdotte nelle varie architetture: 1 : AREO (Apsel family Read Out) Apsel family read out MP management logic Parallel hit encoding Sparsified column readout 2 : SORTEX (SORTed EXtraction) Time sorted hit extraction horizontal parallelization (submatrices) zone sparsification / output compression I2C-like interface 3: SQUARE (Sequenced QUery Advanced REadout) No MP Matrix TS query for time sequenced readout Single column parallel sparsified readout (higher efficiency) higher Time Resolution (more robust time sorting for short BC)
4 Type MAPS Techn. STM 0.13 Matrix 8x32 Type 3D MAPS Techn. Tezz. C Matrix 8x32 Type Hybrid Techn. STM 0.13 Matrix 32x128 Type MAPS Techn. STM 0.13 Matrix 32x128 APSEL3D APSEL3D _TC APSEL4D FE4D32x128 alias SuperPX0 (Più o meno in scala fra loro) Architetture scalate per matrici di dimensioni ridote NP!! 2009 arrivato ieri
Chip dimensions for Layer0 pixel module 12.8 mm 10 mm Readout=10-30mm2 Area~3xarea from FE32x mm mm mm 0.25 mm ~ 75 Pad – pitch 130 m Beam axis mm cut line 0.5 mm ~ 75 Pad – pitch 130 m Piste data line di 2 sottomatrici0.16 mm Piste data line di 2 sottomatrici0.16 mm Submatrix 1 Submatrix 2 Submatrix 3 Submatrix 4 256x192 pixel matrix 50 m pitch Active area=128mm2 Produrremo un ritaglio!
6.4 mm 5 mm Readout=8mm2 Area~x2x area from FE32x mm 8.99 mm 5.56 mm Chip dimensions for APSELVI 128x96 Chartered/Tezzaron 0.25 mm ~ 38 Pad – pitch 130 m Beam axis mm cut line 0.5 mm ~ 38 Pad – pitch 130 m Piste data line di 2 sottomatrici0.16 mm Piste data line di 2 sottomatrici0.16 mm Submatrix 1: 128x48 Submatrix 2: 128x48 128x96 pixel matrix 50 m pitch Active area=32mm2
Parallelamente…. DAQ: EDRO V2 Born as a SLIM5 DAQ board –Recycling several boards: CMS muon trigger mezzanine, VME, CMS barrel sorter, S-Link & TTCrq Used happily in beam tests Reused in ATLAS as the LUCID DAQ board: –Bunch-by-bunch luminosity evaluation Next use: –ZDC luminosity measurements –VIPIX DAQ –Vertical Slice “DO” board Can interface with an Associative Memory board for triggering purposes
VIPIX DAQ duties Obbiettivo principale: Test beam settembre 2011 Installare in gennaio-giugno tutta l’infrastruttura di beam test a Bologna: –4 piani strip; 4 scintillatori; –2 maps digitali (Apsel-like) + 1 analogico –1-4 MAPS Perugine (RAPS) –1 chip MIMOROMA3
pSuperB: progetto pilota SuperB (R&D only) Coinvolgimento di Bologna sulle tematiche del vertex detector: % overlap con VIPIX –Chip di lettura –DAQ Elevate sinergie con il PRIN 2009 se verra’ approvato
The SuperB Silicon Vertex Tracker BaBar SVT 5 Layers of double-sided Si strip sensor Low-mass design. (P t < 2.7 GeV) Stand-alone tracking for slow particles. 97% reconstruction efficiency Resolution ~15 μ m at normal incidence t resolution (ps) MAPS (2 layers) Hybrid Pixels (single layer) B decay mode, =0.28, beam pipe X/X0=0.42%, hit resolution =10 m 40 cm 30 cm 20 cm Layer0 old beam pipenew beam pipe Layer0 subject to large background and needs to be extremely thin: > 5MHz/cm 2, > 1MRad/yr, < 1 %X 0 Can use Babar SVT design for R>3cm Reduced beam energy asymmetry (7x4 GeV vs. 9x3.1 GeV) requires improved vertex resolution Layer0 very close to the IP (R~ 1.5 cm) with low material budget Background levels depends steeply on radius Layer0 needs to have fine granularity and radiation tolerance
R&D on strip/pixel options Hybrid pixel: Prototype Front-end chip for hybrid pixel (32x128, 50 um pitch) tested –Results in fair agreement with simulation Pixel sensor matrix produced and tested: good quality FE chip + sensor matrix bump-bonding in june and test in lab in September CMOS MAPS: Pixel readout architecture for next matrix (3D MAPS with 2 CMOS layers interconnected, ~Dec 2010) could work in data push and triggered mode –triggered readout reduces pixel module complexity (lower speed for links & less material for pixel bus) Layer0 with striplets (technology mature but need some work): –Readout chip! (totally missing) –Module assembly with multilayer fanout (still uncovered !) –HDI/transition card electronics (partly covered by M.Citterio assuming similar to pixel option…not enough!)
12 DAQ reading chain for L0-L5 HDI +Transition card+FEB+ROM DAQ chain independent on the chosen FE options Frascati, 28/09/10 Pi+Bo+Bg/Pv Milano Bologna
ATLAS/FTK Progetto di tracking veloce in ATLAS basato sulle memorie associative Si dovrebbe collocare tra il primo livello di trigger ed il secondo. E’ denominato L1.5 “Feature extraction on L1 data” Approvato in ATLAS in primavera 2 Steps: –2012 Vertical-slice test (parassitaggio su un quadrante) –2013… Installazione su tutto ATLAS Siamo coinvolti Ci vogliono ma non abbiamo dato la disponibilita’ per ora
Francesco Crescioli14 Event selection –trigger LHC frequency 40 MHz Events frequency on tape/disc 100 Hz Selection is necessary 3 trigger levels first level (HW) HLT (SW) second level Event Filter FTK FTK: HW processor to reconstruct charged tracks at LVL2 Pt>1 GeV Inside the whole ID ~off-line quality Works in parallel with DAQ Can be added even after the data taking has began
Francesco Crescioli15 Fast Tracker – Struttura interna Ricieves hits from DAQ Comunicates with Associative Memory boards Sends hits & found roads to the Fitter 6 boards in parallel Each DO handles 1-2 layers Performs pattern recognition on Super Bins Send back found roads to DO Roads and hits with high risolution are composed and the Linear Fitis executed to select real tracks, stored in a buffer ready for the LVL2 CPUs Struttura modulare Piu` processori possono lavorare in parallelo E` possibile iniziare con una versione prototipale e poi aggiungere EDRO in Vertical slice
Guadagni con FTK Miglior rapporto segnale/fondo; migliore capacità di discriminazione ai livelli di trigger bassi maggiore statistica finale Bs→μμ Results (CDF – ATLAS – ATLAS + FTK) CDF with 780 pb -1 of data 16/3/2006 BR < 1.0x10 CL ATLAS (2006) LVL1 2 muons Pt>6 GeV 30 fb B events 60 Backgr. BR < 6.6x10 CL ATLAS + FTK LVL1 singolo muone Pt>6 GeV 30 fb -1 2 nd Pt>6 GeV 66 events (|η|<1 prototype) 178 events (|η|<2.5|) background LVL2 Rate for 2 nd Pt>3 GeV O(10Hz)
Joint venture Vertical Slice: –Pisa: AM board aggiornata –Americani: Interfaccia vs rivelatori a Pixel –Frascati: ricezione hit e clustering (EPMC) –Bologna: Data organizer (firmware/software) Elevate sinergie con il PRIN 2009 se verra’ approvato
Mezzanina ricezione hits Compatibilita’ EDRO; Usabile anche per SuperB Progetto finito; produzione 10 pezzi a breve
Riassumendo Impegni certi: –VIPIX: sviluppo architetture RO, layout 2 chips –VIPIX: test beam 2011 – Software/firmware –pSuperB/SuperB: sovrapposizione VIPIX –ATLAS/FTK: commitment fino alla vertical slice (2012) –ATLAS/FTK: sviluppo software e firmware (Ing. Ele.) Impegni possibili/da decidere: –ATLAS/FTK oltre il test del 2012 –SuperB (se approvato) quante forze? –Oltre il 2011: continuazione di VIPIX? Impegni probabili: Prin2009/Vipix+FTK-like Impegni chiusi: Prin2007