Alberi Alberi radicati : alberi liberi in cui un vertice è stato scelto come radice. Alberi liberi : grafi non orientati connessi e senza cicli. Alberi.

Slides:



Advertisements
Presentazioni simili
Andrea Zandatutoraggio strutture dati STRUTTURE DATI e LABORATORIO II ESERCITAZIONE N°14 albero di ricerca binario.
Advertisements

Strutture dati per insiemi disgiunti
Ordinamento ottimo Ricerca
Alberi binari Definizione Sottoalberi Padre, figli
Estendere i linguaggi: i tipi di dato astratti
Algoritmi Avanzati Grafi e Alberi
Lez. 91 Universita' di Ferrara Facolta' di Scienze Matematiche, Fisiche e Naturali Laurea Specialistica in Informatica Algoritmi Avanzati Alberi di ricerca.
RB-alberi (Red-Black trees)
Code a priorità (Heap) Definizione
Strutture dati elementari
Alberi binari di ricerca
Code con priorità Ordinamento
Heap binomiali.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati.
Capitolo 3 Strutture dati elementari Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Stesso approccio.
Fondamenti di Informatica II Ingegneria Informatica / Automatica (A-I) Meccanica Prof. M.T. PAZIENZA a.a – 3° ciclo.
Fondamenti di Informatica 2 Ingegneria Informatica Docente: Giovanni Macchia a.a
Esercizi su alberi binari
Alberi binari Definizione della struttura dati: struct tree { };
U V U V (a) |cfc|=2 prima e dopo (b) |cfc|=2 prima e |cfc|=1 dopo
1 Strutture dati avanzate Vedremo alcune strutture dati che permettono di eseguire in modo particolarmente efficiente un determinato insieme di operazioni.
Algoritmi e strutture Dati - Lezione 7
Il problema del dizionario
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
Interrogazioni su un albero binario di ricerca Search(S,k) – dato un insieme S ed un valore chiave k restituisce un puntatore x ad un elemento in S tale.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Alberi AVL (Adelson-Velskii.
CORSO DI PROGRAMMAZIONE II Operazioni su alberi ordinati e non
Algoritmi e Strutture Dati Alberi Binari di Ricerca.
Algoritmi e Strutture Dati (Mod. A)
Algoritmi e Strutture Dati
Albero: insieme di punti chiamati NODI e linee chiamate EDGES
Algoritmi e Strutture Dati 20 aprile 2001
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Modello dati ALBERO Albero: Albero: insieme di punti chiamati NODI e linee chiamate EDGES EDGE: linea che unisce due nodi distinti Radice (root): in una.
Modello dati ALBERO Albero: Albero: insieme di punti chiamati NODI e linee chiamate EDGES EDGE: linea che unisce due nodi distinti Radice (root): in una.
Esercizi su alberi binari
Heap binomiali Gli heap binomiali sono strutture dati su cui si possono eseguire efficientemente le operazioni: Make(H) : crea uno heap vuoto Insert(H,
Alberi di ricerca binari
Anche la RB-Delete ha due fasi: Nella prima viene tolto un nodo y avente uno dei sottoalberi vuoto sostituendolo con la radice dellaltro sottoalbero. Per.
Strutture dati per insiemi disgiunti
Ispezione lineare La funzione hash h(k,i) si ottiene da una funzione hash ordinaria h'(k) ponendo L’esplorazione inizia dalla cella h(k,0) = h'(k) e continua.
RB-insert(T, z) // z.left = z.right = T.nil Insert(T, z) z.color = RED // z è rosso. Lunica violazione // possibile delle proprietà degli alberi // rosso-neri.
Heap Ordinamento e code di priorità Ugo de Liguoro.
B trees.
Alberi binari Definizione della struttura dati: struct tree { };
Corso di Informatica 2 a.a. 2003/04 Lezione 6
Cammini minimi da un sorgente
AlgoLab - Code unificabili Code unificabili con alberi binomiali Laboratorio di Algoritmi 02/03 Prof. Ugo de’ Liguoro.
Algoritmi e Strutture Dati Strutture Dati Elementari.
1 FONDAMENTI DI INFORMATICA II Ingegneria Gestionale a.a ° Ciclo Alberi.
MODULO STRUTTURE DATI FONDAMENTALI: Strutture dinamiche
Capitolo 8 Code con priorità Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Alberi rosso-neri Le operazioni sugli alberi binari di ricerca hanno complessità proporzionale all’altezza h dell’albero. Gli alberi rosso-neri sono alberi.
Prog2 a.a. 2001/ Albero binario di ricerca Un albero binario di ricerca é un albero binario in cui ogni nodo ha un’etichetta.
Algoritmi e strutture Dati - Lezione 7 1 Algoritmi di ordinamento ottimali L’algoritmo Merge-Sort ha complessità O(n log(n))  Algoritmo di ordinamento.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Soluzione esercizio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Soluzione esercizio.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 6 Il problema.
Capitolo 6 Il problema del dizionario Algoritmi e Strutture Dati.
Corso di Algoritmi e Strutture Dati APPUNTI SUL LINGUAGGIO C Esercizi su Alberi.
Algoritmi e Strutture Dati HeapSort. Select Sort: intuizioni L’algoritmo Select-Sort  scandisce tutti gli elementi dell’array a partire dall’ultimo elemento.
Prof.ssa Rossella Petreschi Lezione del 17 /10/2014 del Corso di Algoritmica Lezione n°5.
Transcript della presentazione:

Alberi Alberi radicati : alberi liberi in cui un vertice è stato scelto come radice. Alberi liberi : grafi non orientati connessi e senza cicli. Alberi ordinati : alberi radicati con un ordine tra i figli di un nodo.

f ch ea d gb = f c h e a d g b libero f ch e a d gb radicato f ch e a d gb ordinato f ch ea d gb ≠

Alberi binari Alberi posizionali : alberi radicati in cui ad ogni figlio di un nodo è associata una posizione. Le posizioni che non sono occupate da un nodo sono posizioni vuote (nil). Alberi k-ari : alberi posizionali in cui ogni posizione maggiore di k è vuota. Alberi binari : alberi k-ari con k = 2. Il figlio in posizione 1 si dice figlio sinistro e quello in posizione 2 si dice figlio destro.

c b d ae … … … posizionale c b d a e k-ario (k = 4) … … f …

Alberi binari Il modo più conveniente per descrivere gli alberi binari è mediante la seguente. Definizione ricorsiva di albero binario: a)l’insieme vuoto Ø è un albero binario; b)se T s e T d sono alberi binari ed r è un nodo allora la terna ordinata (r, T s,T d ) è un albero binario.

L’albero vuoto Ø si rappresenta graficamente con quadratino nero Per rappresentare l’albero T = (r, T s, T d ) si disegna un nodo etichettato r e sotto di esso le due rappresentazioni dei sottoalberi T s e T d, con T s alla sinistra di T d r TsTs TdTd

L’albero: T = (c, (b, (d, Ø, Ø), (a, (f, Ø, Ø), Ø)), (g, (e, Ø, Ø), Ø)) si rappresenta graficamente: c bg ad f e

Nella memoria l’albero: T = (c, (b, (d, Ø, Ø), (a, (f, Ø, Ø), Ø)), (g, (e, Ø, Ø), Ø)) si rappresenta nel modo seguente: p left right c nil key g nil b e a f d

Alberi binari di ricerca Un albero binario di ricerca è un albero binario in cui la chiave di ogni nodo è maggiore o uguale delle chiavi dei nodi del sottoalbero sinistro e minore o uguale delle chiavi dei nodi del sottoalbero destro. Ad esempio:

Operazioni sugli alberi binari di ricerca Stampa della lista ordinata dei nodi: Stampa(x) if x ≠ nil Stampa(x.left) print x Stampa(x.right)

Complessità: T(0) = c T(n) = T(k)+b+T(n-k-1) Verifichiamo per sostituzione che T(n) = (c + b) n + c T(0) = c = (c + b)0 + c T(n) = T(k) + b + T(n-k-1) = = (c + b)k +c+b+(c + b)(n-k-1)+c = (c +b)n +c

Ricerca di una chiave: Search(x, k) if x == nil or k == x.key return x if k < x.key return Search(x.left, k) else return Search(x.right, k) Complessità O(h) dove h è l’altezza dell’albero.

Si può anche fare iterativa: Search(x, k) while x ≠ nil and k ≠ x.key if k < x.key x = x.left else x = x.right return x Complessità O(h) dove h è l’altezza dell’albero.

Ricerca del minimo e del massimo: Minimum(x) // x ≠ nil while x.left ≠ nil x = x.left return x Complessità O(h) dove h è l’altezza dell’albero. Maximum(x) // x ≠ nil while x.right ≠ nil x = x.right return x

Ricerca di successivo e precedente Successor(x) if x.right ≠ nil return Minimum(x.right) y = x.p while y ≠ nil and x == y.right x = y, y = y.p return y Complessità O(h) dove h è l’altezza dell’albero. Il precedente si ottiene cambiando right in left e Minimum in Maximum.

Inserzione di un nuovo elemento Insert(T, z) // z.left = z.right = nil x = T.root, y = nil // y padre di x while x ≠ nil // cerco dove mettere z y = x if z.key < y.key x = y.left else x = y.right z.p = y // metto z al posto della foglia x if y == nil T.root = z elseif z.key < y.key y.left = z else y.right = z Complessità O(h) dove h è l’altezza dell’albero.

Eliminazione di un elemento Si riporta una versione semplificata, dove si spostano chiavi tra nodi diversi. Questo potrebbe rendere inconsistenti altri puntatori, a tali nodi. A lezione, discussa una versione che non soffre di questo problema. Vedi Libro Paragrafo 12.3

Eliminazione di un elemento: Delete(T, z) // z ≠ nil if z.left == nil or z.right == nil // tolgo z y = z // che ha al più un solo figlio else // tolgo il successore di z che non ha // sottoalbero sinistro y = Successor(z), z.key = y.key // cerco l’eventuale unico figlio x di y if y.left == nil x = y.right else x = y.left

// metto x al posto di y if x ≠ nil x.p = y.p if y.p == nil T.root = x elseif y == y.p.left y.p.left = x else y.p.right = x Complessità O(h) dove h è l’altezza dell’albero.