Misure ed Errori.

Slides:



Advertisements
Presentazioni simili
Misure ed Errori Prof Valerio CURCIO.
Advertisements

Equazioni e calcoli chimici
progetto SCIENTIA MAGISTRA VITAE
Approccio metodologico esperienziale all’astronomia: presupposti
L’ultima c.s. contiene un’imprecisione di 1
Come possono essere classificati?
Proprietà degli stimatori
Cifre significative e arrotondamento Regole per la determinazione il numero delle cifre significative Conteggio delle cifre significative Tutti i valori.
Misure ed errori Al mercato compiere misure è un’esigenza
ERRORI L'errore è presente in ogni metodo analitico e può essere dovuto a cause diverse. L’errore può essere definito come la differenza tra il valore.
CIFRE SIGNIFICATIVE In un numero misurato sono quelle cifre che includono tutti i numeri sicuri più un certo numero finale che ha una certa incertezza.
CIFRE SIGNIFICATIVE In un numero misurato sono quelle cifre che includono tutti i numeri sicuri più un certo numero finale che ha una certa incertezza.
CIFRE SIGNIFICATIVE In un numero misurato sono quelle cifre che includono tutti i numeri sicuri più un certo numero finale che ha una certa incertezza.
CIFRE SIGNIFICATIVE In un numero misurato sono quelle cifre che includono tutti i numeri sicuri più un certo numero finale che ha una certa incertezza.
Dato un insieme di misure sperimentali di una stessa grandezza,
Progetto Pilota 2 Lettura e interpretazione dei risultati
Gli Integrali.
Esperienza di laboratorio sull’elasticità
Efisio Antonio Coppola
STATISTICA a.a PARAMETRO t DI STUDENT
CIFRE SIGNIFICATIVE In un numero misurato sono quelle cifre che includono tutti i numeri sicuri più un certo numero finale che ha una certa incertezza.
Cenni di teoria degli errori
Studente Claudia Puzzo
Stechiometria attendibilità: è la qualità globale di un dato.
Emivita Fisica (T1/2) e Vita Media (T)
Propagazione degli errori
Studio funzioni Premesse Campo esistenza Derivate Limiti Definizione di funzione Considerazioni preliminari Funzioni crescenti, decrescenti Massimi,
METODI E CONTROLLI STATISTICI DI PROCESSO
Quale valore dobbiamo assumere come misura di una grandezza?
Misurare una grandezza fisica
Sistemi di numerazione
Appunti del Corso di fisica per istituti professionali
Grandezze e Misure.
Tutte le grandezze fisiche si dividono in
PON Laboratorio Scientifico ITS «M. Buonarroti» Caserta
Il valore medio Quanto tempo impiega il pendolo per fare cinque oscillazione complete? Se si fanno diverse misure, si sceglie come risultato della misura.
Introduzione alla fisica
Grandezze e Misure.
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
Le funzioni in Excel. La funzione conta,numeri La funzione conta.numeri calcola il numero di celle che contengono un valore numerico all’interno di un.
Le misure sono osservazioni quantitative
Rappresentazione dell'informazione
Elementi di statistica Le cifre significative
Intervalli di confidenza
Strumenti Matematici per la Fisica
Elementi di statistica La stima del valore vero
Rappresentazione dei numeri
Integrali definiti I parte
Cifre significative I numeri possono essere: esatti, conteggi, definizioni Ottenuti da misure : Misurare una distanza Ogni misura sperimentale ha un errore.
Forma normale delle equazioni di 2° grado Definizione. Un'equazione di secondo grado è in forma normale se si presenta nella forma Dove sono numeri.
TRATTAMENTO STATISTICO DEI DATI ANALITICI
Strumenti di misura e teoria degli errori
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
Analisi matematica Introduzione ai limiti
Rappresentazione di un numero reale
La numerazione ottale. Il sistema di numerazione ottale ha ampio utilizzo in informatica E’ un sistema di numerazione posizionale La base è 8 Il sistema.
La frazione come numero razionale assoluto
Corso di Fisica per Studenti della Facoltà di Farmacia Corso di Fisica per Studenti della Facoltà di Farmacia Università degli Studi di Napoli FEDERICO.
LAVOISIER Conservazione della massa nelle reazioni chimiche PROUST Un determinato composto contiene gli elementi in rapporti di peso indipendenti dal modo.
MetrologiaVittore Carassiti - INFN FE1 METROLOGIA.
Numeri Esatti e Numeri Approssimati
Gli strumenti di misura
Cosa è la FISICA Esperienza trenino: Misurare una lunghezza
Gli strumenti Gli strumenti di misura possono essere:
Transcript della presentazione:

Misure ed Errori

Errori nelle misure Ogni misura, per quanto accurata e precisa, è affetta da errore. Errore non è sinonimo di “sbaglio”, ma sta ad indicare proprio che ogni strumento di misura, per diverse cause, ha dei “limiti” nel misurare. Basta pensare, ad esempio, alla sensibilità. E’ quindi impossibile ottenere il valore “reale” della misura di una qualsiasi grandezza fisica.

Errori sistematici Un errore si dice sistematico se è causato da uno strumento di misura difettoso. Un cronometro tarato male, per esempio per difetto, avrà sempre la tendenza a stimare misure di tempo eccedenti rispetto alla realtà. Un righello deformato dal caldo non può offrire ovviamente una misura corretta.

Errori accidentali Un errore si dice accidentale se viene commesso per semplice casualità. È un errore accidentale la lettura non in asse di uno strumento a scala, come ad esempio un termometro analogico. È un errore accidentale il ritardo nello starter di un cronometro, azionato a mano, dovuto al tempo di reazione di chi esegue la misura.

Teoria degli errori Le misure ottenute con strumenti di misura, come detto, sono inevitabilmente affette da errori. Esistono però dei metodi, descritti dalla teoria degli errori, che servono a limitare al minimo l’incidenza degli errori stessi sulle misure. Parleremo di Valor Medio, Errore Assoluto, Intervallo di Incertezza, Errore Relativo ed Errore Percentuale.

Valore Medio Supponiamo di aver eseguito n misure di una stessa grandezza con uno strumento di misura. L’insieme delle misure è il seguente: {x1, x2, … , xn}. Definiamo Valore Medio G il rapporto

Errore Assoluto In un insieme di misure {x1, x2, … , xn}c’è sempre una misura più grande, xmax, ed una più piccola, xmin. Si definisce Errore Assoluto ea (o Semidispersione Media) il rapporto

Intervallo di Incertezza Come abbiamo detto, non è possibile ottenere una misura esatta. Risulta allora utile ottenere un intervallo minimo in cui siamo sicuri che ricade la misura esatta. Questo intervallo, detto Intervallo di Incertezza, è il seguente: Dove x indica la misura esatta, G il valore medio e ea l’errore assoluto.

Intervallo di Incertezza Scrivere una misura nel modo seguente: significa che il valore della massa m che si sta cercando è tale che ossia che la massa m ha un valore compreso tra i 12.49 kg e i 12.53 kg.

Errore Relativo Non sempre l’errore assoluto ci offre una stima efficiente del “peso” dell’errore stesso sulla misura. È più grave commettere un errore di 1 cm su 1 m, o di 1 m su 1 km? Sicuramente è più grave il primo. Perché? Chiamiamo Errore Relativo er il rapporto:

Errore Relativo Ora vediamo il perché della risposta precedente. Nel primo caso abbiamo un errore relativo mentre nel secondo caso abbiamo che è più piccolo del primo.

Errore Percentuale Quando si fanno tante misure di una grandezza, siamo in grado di scartare quelle misure che sono fuori da un intervallo accettabile. L’Errore Percentuale ep, definito come segue, ha proprio questo scopo: e si esprime come percentuale, cioè col simbolo “%”.

Errore Percentuale Tornando alla domanda precedente possiamo dire che nel primo caso avevamo ep = 0.01×100 = 1% mentre nel secondo caso ep = 0.001×100 = 0.1%

Livello di Confidenza L’errore percentuale serve a stabilire il livello di confidenza di una misura. Solitamente vengono scartate tutte quelle misure per le quali l’errore percentuale supera il 2%. Questo parametro è fondamentale per quanto riguarda il controllo di qualità dei prodotti industriali, ma anche per tutte le costruzioni in generale; in questo caso si parla di “tolleranza”.

Importante Il valor medio, l’errore assoluto e l’intervallo di incertezza hanno la stessa unità di misura della grandezza misurata e, come tale, è obbligatorio specificarla sempre! L’errore relativo e l’errore percentuale, al contrario, sono numeri “puri”, ossia non possiedono alcuna unità di misura.

Arrotondamenti Quante cifre bisogna indicare dopo la virgola, in un risultato decimale? Nel caso di valore ottenuto da uno strumento di misura il problema non si pone essendo lo strumento stesso ad indicarle. E se durante una misura indiretta (calcoli) otteniamo numeri a più cifre decimali? In questo caso si scelgono tante cifre quante sono quelle relative alla sensibilità dello strumento col quale si è misurato, operando degli “arrotondamenti”.

Arrotondamenti Un numero a più cifre decimali può essere sempre arrotondato per eccesso o per difetto. Si arrotonda per eccesso quando si vuole un valore leggermente più alto di quello che si ha. Si arrotonda per difetto quando si vuole un valore leggermente più basso di quello che si ha.

Eccesso e Difetto Si sceglie il numero di cifre decimali da tenere. Si guarda la prima cifra decimale tra quelle da scartare. Se essa è maggiore o uguale a 5 si aumenta di 1 l’ultima cifra decimale da tenere (arrotondamento per eccesso). Se essa è minore di 5 si lascia inalterata l’ultima cifra decimale da tenere (arrotondamento per difetto).

Esempio Si vuole arrotondare a 3 cifre decimali il numero 11.3567099. In rosso sono le cifre da tenere. La prima cifra da scartare, il 7 (in blu), essendo maggiore di 5, fa sì che il numero finale diventi 11.357 L’arrotondamento eseguito è per eccesso.

Esempio Si vuole arrotondare a 2 cifre decimali il numero 15.9523137. In rosso sono le cifre da tenere. La prima cifra da scartare, il 2 (in blu), essendo minore di 5, fa sì che il numero finale diventi 15.95 L’arrotondamento eseguito è per difetto.

Cifre significative Si chiamano Cifre Significative di una misura le cifre “certe” e la prima “incerta”, in riferimento all’intervallo di incertezza. In generale, il numero delle cifre significative si trova contando la cifra incerta e le cifre che stanno alla sua sinistra fino all’ultima cifra, se essa è diversa da zero.

Esempi 12.45 ha 4 cifre significative 47.3 ha 3 cifre significative