Un insieme limitato di misure permette di calcolare soltanto i valori di media e deviazione standard del campione, ed s. E’ però possibile valutare.

Slides:



Advertisements
Presentazioni simili
Trattamento statistico dei dati analitici
Advertisements

Corso di esperimentazione di fisica 1 Il metodo dei minimi quadrati
Stime per intervalli Oltre al valore puntuale di una stima, è interessante conoscere qual è il margine di errore connesso alla stima stessa. Si possono.
Come organizzare i dati per un'analisi statistica al computer?
Intervalli di confidenza
Proprietà degli stimatori
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Stime per intervalli Oltre al valore puntuale di una stima, è interessante conoscere qual è il margine di errore connesso alla stima stessa. Si possono.
Introduzione alle misure strumentali
Affidabilita` di un’analisi. Specificita`:
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Lez. 3 - Gli Indici di VARIABILITA’
Analisi dei dati per i disegni ad un fattore
Validazione di un metodo di analisi
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
Inferenza statistica per un singolo campione
DIFFERENZA TRA LE MEDIE
Caratteristiche metrologiche degli strumenti di misura.
Appunti di inferenza per farmacisti
Corso di biomatematica lezione 5: propagazione degli errori
Corso di biomatematica lezione 6: la funzione c2
Corso di biomatematica lezione 7-2: Test di significatività
STATISTICA a.a PARAMETRO t DI STUDENT
STATISTICA a.a LA STATISTICA INFERENZIALE
ISTOGRAMMI E DISTRIBUZIONI : i xixi
LERRORE IN LABORATORIO GROSSOLANO (per negligenza e/o imperizia) SISTEMATICO (accuratezza) CASUALE (precisione)
Parte I (introduzione) Taratura degli strumenti (cfr: UNI 4546) Si parla di taratura in regime statico se lo strumento verrà utilizzato soltanto per misurare.
Linee guida per la Chimica Analitica Statistica chemiometrica
Quale valore dobbiamo assumere come misura di una grandezza?
Le distribuzioni campionarie
TRATTAMENTO DEI DATI ANALITICI
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
STATISTICA CHEMIOMETRICA
Corso di Chimica Analitica
Corso di Chimica Analitica I
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
L’ERRORE NELL’ANALISI QUANTITATIVA
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Domande riepilogative per l’esame
Lezione B.10 Regressione e inferenza: il modello lineare
Accenni di analisi monovariata e bivariata
Corso di Analisi Statistica per le Imprese
Strumenti statistici in Excell
Il residuo nella predizione
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
TRATTAMENTO DEI DATI ANALITICI I compiti del chimico analista vanno oltre la corretta esecuzione di una metodica analitica. Sono altrettanto importanti.
Intervallo di Confidenza Prof. Ing. Carla Raffaelli A.A:
Elementi di statistica Le cifre significative
Intervalli di confidenza
Elementi di statistica La stima del valore vero
La distribuzione campionaria della media
Elaborazione statistica di dati
ANALISI E INTERPRETAZIONE DATI
Riportare il segnale sulla scala Y
Scelta del metodo analitico:
TRATTAMENTO STATISTICO DEI DATI ANALITICI
Problemi analitici quantitativi I metodi chimico-analitici strumentali hanno lo scopo di quantificare o di determinare proprietà chimico-fisiche di uno.
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
Regressione semplice e multipla in forma matriciale Metodo dei minimi quadrati Stima di beta Regressione semplice Regressione multipla con 2 predittori.
Espressione dei risultati e dell’incertezza di misura
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
Statistica con Excel Corso di Fisica ed Elementi di Laboratorio ed Informatica CdL Scienze Biologiche AA 2015/2016.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Trattamento dei dati sperimentali
Gli Indici di VARIABILITA’
Transcript della presentazione:

Un insieme limitato di misure permette di calcolare soltanto i valori di media e deviazione standard del campione, ed s. E’ però possibile valutare la probabilità che la media della popolazione, m, si trovi entro una distanza definita dalla media misurata, . I limiti di fiducia sono i valori intorno ad che definiscono l’intervallo di fiducia della media, ovvero l’intervallo all’interno del quale ci si aspetta che cada con una certa probabilità o grado di fiducia il valore vero, m. Per un insieme di N dati sperimentali, l’intervallo di fiducia è dato dall’espressione: dove s è la deviazione standard del campione e t è un parametro numerico, detto t di Student, il cui valore si può trovare in opportune tabelle. Il valore di t aumenta all’aumentare del livello di fiducia richiesto ed al diminuire dei gradi di libertà (ovvero del numero delle misure).

Test t - Confronto fra media sperimentale e valore vero Questo test permette di confrontare una media sperimentale con il valore vero m. Per effettuare questo test si calcola a partire dai dati sperimentali un valore tsperim dato dalla: Questo valore viene poi confrontato con il valore teorico tteor che viene ricavato dalla tabella dei valori del parametro t di Student, per un certo numero di gradi di libertà ed un certo livello di fiducia. Se tsperim > tteor si può concludere che, a quel determinato livello di fiducia, esiste una differenza significativa (ovvero un errore determinato) fra e m. Se invece tsperim < tteor l’eventuale differenza fra e m è, a quel livello di fiducia, non significativa, ovvero dovuta ad errori casuali.

Test t - Confronto fra media sperimentale e valore vero Esempio Si sottopone un campione a concentrazione (c) nota Ad un determinato metodo analitico. Si vuole quindi determinare se tale metodo dà il risultato atteso. Eseguendo 3 misure si ottiene: X1= 38.9 ppb X2= 37.4 ppb X3= 37.1 ppb Quindi: xmedio= 37.8 ppb s=0.964 ppb ttab= 4.3 per livello confidenza 95% e numero gradi di libertà=2 toss= 1.98 Poichè toss<ttab , H0 è accettata, cioè non c’è diffeerenza significativa tra il risultato ottenuto ed il valore vero ad un livello di confidenza del95%. X = 37.8±4.3(0,964/(3)1/2)= 37.8± 2.4

Test t- Confronto fra medie sperimentali Per verificare la validità di un’analisi occorre spesso confrontare i risultati ottenuti con due diversi metodi od in condizioni sperimentali differenti. A questo scopo si può utilizzare il test t per confrontare due diverse medie sperimentali e . Il valore tsperim è in questo caso dato dall’equazione: dove s1-2 è la deviazione standard complessiva dell’insieme dei dati, data dalla: Il valore calcolato tsperim viene confrontato con quello teorico, ricavato per un certo livello di fiducia e per N1 + N2 -2 gradi di libertà. Come in precedenza, se tsperim > tteor si può concludere che a quel livello di fiducia esiste una differenza statisticamente significativa fra le due medie; in caso contrario, la differenza è dovuta ad errori casuali.

Test t- Confronto fra medie sperimentali Esempio Due metodi hanno dato i seguenti risultati sullo stesso campione: X1= 28.0 ppm s1= 0.3 ppm n° misure= 10 X2= 26.3 ppm s1= 0.2 ppm n° misure= 9 S= 0.258 toss = (28.0-26.3)/[0.258(1/10+1/9)1/2] =14.3 ttab = 2.11 con un livello di confidenza pari a 95% e con 17 gradi di libertà Poichè toss>ttab , H0 è rifutata, cioè c’è diffeerenza significativa tra i due risultati

Test F-Confronto della varianza s2 Il test F viene utilizzato per stabilire se esiste una differenza significativa fra le precisioni di due serie di misure. Ad esempio, può essere utilizzato per stabilire se due metodi analitici hanno una differente precisione. Se le precisioni sono statisticamente differenti non è possibile, ad esempio, confrontare le medie delle due misure utilizzando il t-test. Per questo test si calcola il parametro F, dato da: dove s1 ed s2 sono le deviazioni standard delle due serie di dati (s1 > s2). I valori di Fteor sono disponibili in tabelle statistiche in funzione dei gradi di libertà n1 e n2 (il numero di misure può essere diverso per i due metodi) e del livello di fiducia richiesto. Quando Fsperim > Fteor si conclude che a quel determinato livello di fiducia s1 ed s2 sono differenti, mentre quando Fsperim < Fteor non c’è differenza significativa fra s1 ed s2.

TEST CHI-QUADRO 2 -Verifica della probabilità di un evento Il test 2 viene utilizzato per determinare se la frequenza con la quale avviene un evento è statisticamente diversa da quella attesa. La quantità 2 è definita dalla: dove fi ed Fi sono la frequenza osservata e quella aspettata di ogni evento, mentre la sommatoria si estende a tutti i possibili eventi. Opportune tabelle danno i valori di 2teor per un determinato livello di fiducia ed un certo numero di gradi di libertà n. Se 2sperim > 2teor si conclude che a quel determinato livello di fiducia uno (o più) eventi hanno una frequenza differente da quella attesa. Viceversa, se 2sperim < 2teor si può concludere che, a quel livello di fiducia, gli eventi si presentano con le probabilità attese.

TRATTAMENTO DI DATI SOSPETTI Talvolta un dato può sembrare incompatibile con tutti gli altri. Il test Q permette di stabilire se questo dato deve essere considerato egualmente, oppure scartato in quanto inattendibile. Per eseguire questo test, i dati vengono disposti in ordine crescente e si calcola il valore del parametro Qsperim, definito come: dove il divario è la differenza fra il dato incerto (che sarà necessariamente il più alto od il più basso) e quello più vicino. Si cerca poi in tabella il valore di Qteor corrispondente al numero di osservazioni considerato ed al grado di fiducia richiesto. Se Qsperim > Qteor il dato in esame dovrebbe essere scartato in quanto, con una probabilità almeno pari al livello di fiducia considerato, non appartiene alla popolazione in esame. Se necessario, l’operazione può poi essere ripetuta per il dato immediatamente precedente, e così via. Il test Q dovrebbe essere comunque applicato con cautela per campioni estremamente piccoli (N < 5). intervallo divario

TRATTAMENTO DI DATI SOSPETTI Valori di Q in funzione del numero di dati e del livello di fiducia N Q90% Q95% Q99% 3 0,94 0,98 0,99 4 0,76 0,85 0,93 5 0,64 0,73 0,82 6 0,56 0,74 7 0,51 0,59 0,68 8 0,47 0,54 0,63 9 0,44 0,06 10 0,41 0,48 0,57

Curve di calibrazione Regressione lineare: y = mx + b Concentrazione Segnale Sx Ax Concentrazione Segnale A1 A2 A3 Regressione lineare: y = mx + b m (Dy/Dx) è la pendenza della retta e b è la sua intercetta sull’asse y

COEFFICIENTE DI CORRELAZIONE LINEARE (R)

Calibrazione esterna: X = soluzioni standard Y0=segnale della soluzione incognita X0= concentrazione incognita x1 xi xn y1 yi yn y0 x0 Calibrazione per aggiunte standard: Concentrazione aggiunta Segnale A1 A2 A3 -Ax Campione Campioni addizionati di analita Calibrazione con standard interno

CARATTERISTICHE DI UN METODO ANALITICO Un metodo analitico può essere caratterizzato attraverso le seguenti grandezze: Accuratezza Precisione Specificità/selettività Limite di rilevabilità (LOD) Limite di quantificazione (LOQ) Robustezza (Robustness) Solidità (Ruggedness) Esistono anche variabili più direttamente connesse all’applicazione pratica del metodo, quali ad esempio la definizione dei costi e dei tempi richiesti per l’analisi o lo studio della stabilità dei rettivi.

CARATTERISTICHE DI UN METODO ANALITICO Accuratezza: concordanza del risultato ottenuto con un valore accettato come valore “vero” (valore di riferimento). Precisione: riproducibilità dei risultati ottenuti da una serie di misure ripetute dello stesso campione. Limite di rivelabilità (LOD): la minima concentrazione di analita rivelabile, ma non quantificabile (test di presenza/assenza). (la concentrazione di analita in grado di dare un segnale pari al segnale del bianco più tre volte la sua deviazione standard) Limite di quantificazione (LOQ): la minima concentrazione di analita determinabile con precisione ed accuratezza accettabili. (la concentrazione di analita in grado di dare un segnale pari al segnale del bianco più dieci volte la sua deviazione standard )

CARATTERISTICHE DI UN METODO ANALITICO Sensibilità: pendenza della curva di calibrazione, nel caso in cuiessa sia lineare o comunque linearizzabile, e rappresenta una misura della capacità di un metodo analitico di discriminare piccole variazioni della concentrazione dell’analita. Specificità: capacità di un metodo di determinare in modo inequivocabile l’analita in presenza degli altri componenti del campione. Robustezza: misura della capacità di un metodo analitico di non essere influenzato da piccole variazioni dei parametri sperimentali nell’intorno dei loro valori ottimali. Solidità: grado di riproducibilità, ovvero la precisione di una serie di misure effettuate con lo stesso metodo analitico, ma in differenti laboratori.