Corso di Analisi Statistica per le Imprese

Slides:



Advertisements
Presentazioni simili
ESERCITAZIONE 2 Come leggere la tavola della normale e la tavola t di Student. Alcune domande teoriche.
Advertisements

Test delle ipotesi Il test consiste nel formulare una ipotesi (ipotesi nulla) e nel verificare se con i dati a disposizione è possibile rifiutarla o no.
8) GLI INTERVALLI DI CONFIDENZA
Stime per intervalli Oltre al valore puntuale di una stima, è interessante conoscere qual è il margine di errore connesso alla stima stessa. Si possono.
ITIS “G.Galilei” – Crema Lab. Calcolo e Statistica
LA VARIABILITA’ IV lezione di Statistica Medica.
STATISTICA DESCRITTIVA
Intervalli di confidenza
Proprietà degli stimatori
Stime per intervalli Oltre al valore puntuale di una stima, è interessante conoscere qual è il margine di errore connesso alla stima stessa. Si possono.
Confronto tra 2 campioni Nella pratica è utilissimo confrontare se 2 campioni provengono da popolazioni con la stessa media: Confronti tra produzioni di.
Scale di misura delle variabili
Parametri dinteresse IUT Nice – Côte dAzur Département STID 6 Janvier 2006 Sondages Corso di campionamento.
Fondamenti della Misurazione
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Analisi dei dati per i disegni ad un fattore
Intervalli di Confidenza
Progetto Pilota 2 Lettura e interpretazione dei risultati
STATISTICA A – K (60 ore) Marco Riani
Inferenza statistica per un singolo campione
Valutazione delle ipotesi
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
Esercizi x1=m-ts x2=m+ts
intervallo di confidenza e test di significatività per una proporzione
DALL'INTERVALLO DI PROBABILITÀ
Appunti di inferenza per farmacisti
Corso di biomatematica lezione 10: test di Student e test F
Corso di biomatematica lezione 4: La funzione di Gauss
Corso di biomatematica lezione 7-2: Test di significatività
STATISTICA a.a PARAMETRO t DI STUDENT
Esercizi x1=m-ts x2=m+ts
Lezione 8 Numerosità del campione
Lezione 8 Numerosità del campione
Num / 36 Lezione 9 Numerosità del campione.
Lezione 4 Probabilità.
Popolazione campione Y - variabile casuale y - valori argomentali Frequenza relativa: Estrazione Densità della classe i-esima: Lezione 1.
Test della differenza tra le medie di due popolazioni
Il test di ipotesi Cuore della statistica inferenziale!
Verifica delle ipotesi su due campioni di osservazioni
Le distribuzioni campionarie
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
STATISTICA INFERENZIALE
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
Intervalli di Confidenza Corso di Teoria dell’Inferenza Statistica 2 a.a. 2003/2004 Quarto Periodo Prof. Filippo DOMMA Corso di Laurea in Statistica –
La verifica d’ipotesi Docente Dott. Nappo Daniela
Lezione B.10 Regressione e inferenza: il modello lineare
IL CAMPIONE.
“Teoria e metodi della ricerca sociale e organizzativa”
ANALISI STATISTICA DI DATI CAMPIONARI
Le distribuzioni campionarie
Test basati su due campioni Test Chi - quadro
Verifica di ipotesi statistiche
Intervallo di Confidenza Prof. Ing. Carla Raffaelli A.A:
Intervalli di confidenza
La distribuzione campionaria della media
Esercitazioni di Statistica con Matlab Dott
La covarianza.
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Inferenza.
Corso di Laurea Magistrale in Economia e Professioni
La distribuzione normale. Oltre le distribuzioni di frequenza relative a un numero finito di casi si possono utilizzare distribuzioni con un numero di.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Implementazione.
Introduzione all’inferenza
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Test di ipotesi.
L’INFERENZA STATISTICA
Corso di Analisi Statistica per le Imprese
Corso di Analisi Statistica per le Imprese
Transcript della presentazione:

Corso di Analisi Statistica per le Imprese RICHIAMI DI INFERENZA: INTERVALLI DI CONFIDENZA Prof. L. Neri a.a. 2014-2015

Stima puntuale e stima intervallare Esistono due tipi fondamentali di stimatori: Stimatore puntuale Stimatore intervallare Stimatore puntuale: singola statistica che viene usata per stimare il vero valore di un parametro della popolazione. Ad esempio la media campionaria è uno stimatore puntuale della media della popolazione , la varianza campionaria è uno stimatore puntuale della varianza della popolazione 2.

Stima puntuale e stima intervallare Stimatore intervallare: intervallo di valori che ha una certa probabilità o confidenza di comprendere il vero valore del parametro della popolazione. In generale il livello di confidenza è indicato con (1-)% dove  è la probabilità che si trova nelle code della distribuzione, al di fuori dell’intervallo di confidenza (la probabilità della coda sinistra e della coda destra coincidono e sono pari a /2).

Intervallo di confidenza per la media noto il valore dello scarto quadratico medio La statistica per costruire intervalli di confidenza per la media è ovvero una distribuzione Normale standardizzata, “indipendentemente” dalla distribuzione originale della variabile X (per campioni sufficientemente grandi). Da tale distribuzione scaturiscono gli estremi dell’intervallo di confidenza per la media.

Intervallo di confidenza per la media noto il valore dello scarto quadratico medio della popolazione

Intervalli di confidenza Curva normale per determinare il valore di Z necessario per un livello di confidenza del 95% Curva normale per determinare il valore di Z necessario per un livello di confidenza del 99%

Intervalli di confidenza Intervalli di confidenza per cinque diversi campioni di ampiezza n=25, estratti da una popolazione normale con μ = 368 e σ = 15

Esempio intervallo di confidenza Una partita di bulloni presenta un diametro medio incognito, la varianza del diametro invece è pari a 0.01. Si estrae un campione di n=1000 bulloni sui quali si osserva un diametro medio di 1.2 cm. Si determini un intervallo di confidenza al 99% (fissato un livello di confidenza del 99%). Soluzione: 1-α=0.99→ α=0.01 → α/2=0.005 →1-α/2=0.995 Dalle tavole della distribuzione Normale (vedi Tavole_Statistiche.pdf) si ha che Z(0.995) è circa =2.576 per cui l’intervallo al 99% è

Intervalli di confidenza per la media Con scarto quadratico medio della popolazione incognito La statistica per costruire intervalli di confidenza per la media è t ha una distribuzione t di Student con n-1 gradi di libertà. Il significato dei gradi di libertà è legato al fatto che per calcolare S è necessario conoscere la media campionaria. In tal caso solo n-1 valori campionari sono liberi di variare perché l’n-esimo sarà determinato automaticamente per differenza.

Intervalli di confidenza per la media Con scarto quadratico medio della popolazione incognito All’aumentare dei gradi di libertà, la distribuzione t si avvicina progressivamente alla distribuzione normale fino a che le due distribuzioni risultano virtualmente identiche.

Intervalli di confidenza per la media Con scarto quadratico medio della popolazione incognito Le tavole della distribuzione t di Student forniscono la probabilità (l’area sottesa) a destra del valore indicato.

Intervalli di confidenza per la media Con scarto quadratico medio della popolazione incognito L’intervallo di confidenza di livello (1-)% per la media con  ignoto è definito come segue:

Intervallo di confidenza per una proporzione Per ricavare l’intervallo di confidenza per la proporzione della popolazione p, che ha una certa caratteristica, si utilizza la proporzione campionaria ps. Se il prodotto np e anche n(1-p) sono uguali almeno a 5, la distribuzione di ps può essere approssimata alla distribuzione Normale. L’errore standard della proporzione è dato da

Intervallo di confidenza per una proporzione Fissato il livello di confidenza (1-α)%.

Esempio Un’azienda produttrice di lamette commissiona un’indagine campionaria su una popolazione di uomini. Si seleziona un campione di numerosità n=100. Su tale campione si stima che il 40% degli uomini preferisce le lamette prodotte dall’azienda in questione. Si determini un’intervallo di confidenza al 95% per la stima della proporzione nella popolazione.

Esempio ovvero l'intervallo di confidenza per p è 0.40±0.098=[0.302,0.498]