La corrente elettrica continua

Slides:



Advertisements
Presentazioni simili
La pila e l’effetto Joule
Advertisements

Prof. Roberto Capone Liceo Classico “F. De Sanctis “ Lacedonia (AV)
Struttura atomica Un atomo è formato da: nucleo centrale +
Elettricità Per strofinio i corpi acquistano una proprietà detta stato elettrico,per cui risultano in possesso di elettricità.
Fisica 2 Corrente continua
Fisica 2 Corrente continua
Corrente continua 2 6 giugno 2011
Corrente continua 1 6 giugno 2011
ELETTRICITA’ E MAGNETISMO
Parte II Corrente e conduttori
RESISTORI IN SERIE E IN PARALLELO
Effetti della corrente
L’Elettricità.
Corso di Fisica B – C.S. Chimica
La corrente elettrica (1/2)
Energia e potenza nei circuiti elettrici
L’elettricità Capobianco Salvatore Avanti Classe 3° D
Elettricità e magnetismo
Prof. Antonello Tinti La corrente elettrica.
Corrente elettrica Si consideri una sezione A di un conduttore e sia dq la carica elettrica totale che attraversa la sezione A in un intervallo di tempo.
La batteria della figura ha una differenza di potenziale di 10 V e i cinque condensatori hanno una capacità di 10 mF. Determinare la carica sui condensatori.
CAMPO MAGNETICO GENERATO
Corrente Elettrica La carica in moto forma una corrente elettrica.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Trasporto dei portatori (1) Moto di elettroni in un cristallo senza (a) e con (b) campo elettrico.
Le grandezze fondamentali dellelettricità sono: la carica elettrica, la corrente elettrica e il voltaggio. La corrente (I) è definita come la quantità
Circuiti Elettrici.
Corrente e resistenza Cap. 27 HRW
Corrente elettrica La seguente presentazione è stata ideata per offrire agli studenti una sintesi dei più importanti fenomeni riguardanti l’elettromagnetismo.
L’elettricità.
RELAZIONE DI FISICA Sabato 26 Novembre 2005
Per bambini scuola elementare
CIRCUITI IN CORRENTE CONTINUA
Prof. Francesco Zampieri
Cenni teorici. La corrente elettrica dal punto di vista microscopico
6. La corrente elettrica continua
7. La corrente elettrica nei metalli
Per comprendere questa distinzione occorre tornare alla natura della materia, ossia agli atomi da cui è composta: esistono atomi i cui nuclei trattengono.
PROPRIETA’ ELETTRICHE
GENERATORE di Corrente.
Le leggi di Ohm Realizzazione a cura del Prof. Francesco Porfido.
La corrente elettrica Realizzazione a cura del Prof. Francesco Porfido.
Resistenze in serie e in parallelo
CORRENTE ELETTRICA, LEGGE DI OHM, RESISTENZE IN SERIE E IN PARALLELO E LEGGI DI KIRCHOFF PER I CIRCUITI In un condensatore la carica Q = C DV che può accumulare.
Capitolo 5 La legge di Ohm e l’effetto Joule
L'ELETTRICITA'.
Andrea Ventura Scuola Estiva di Fisica 2014
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce un flusso di particelle cariche, cioè una corrente elettrica. Per convenzione,
La corrente elettrica.
Misure elettriche ed elettroniche
ENERGIA E POTENZA ELETTRICA
Circuiti ed Elettronica
Insegnare l’elettricità: il circuito elettrico
La corrente elettrica Il fenomeno della corrente elettrica può essere assimilato ad un fenomeno idraulico. Consideriamo due serbatoi A e B posti ad.
Argomenti da trattare:
RETI ELETTRICHE Leggi di Kirchhoff.
Grandezze elettriche.
Circuiti elettrici - Componenti reali
Elettricità, elettrotecnica, elettronica
La carica elettrica Tutto ciò che ha a che fare con l’elettricità trae origine dalla materia chiamata carica elettrica. La carica elettrica si misura con.
In un conduttore sono presenti degli elettroni liberi di muoversi al suo interno. Tale movimento è dovuto all’agitazione termica delle particelle. Se.
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
Corrente elettrica Cariche in movimento e legge di Ohm.
Resistenze in serie F. Bevacqua-S. Alati e in parallelo.
Prof.ssa Francesca Santonocito 1 La prima legge di Ohm “Metodi e tecniche per la didattica innovativa nella matematica” Codice Progetto: Codice Progetto:
LA CORRENTE ELETTRICA NEI METALLI. LA CORRENTE ELETTRICA Una corrente elettrica è un movimento ordinato di particelle dotate di carica elettrica. Nei.
Transcript della presentazione:

La corrente elettrica continua Unità 12 La corrente elettrica continua 5D

1. L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. In un filo metallico (come il filamento di una lampadina) le cariche in moto sono gli elettroni, negativi . xxxxxx 5D

L'intensità della corrente elettrica Un moto di cariche è simile al moto di un liquido. xxxxxx 5D

L'intensità di corrente L'intensità di corrente elettrica è il rapporto tra la carica che attraversa una sezione S di un conduttore nell'intervallo di tempo t, e l'intervallo di tempo stesso. Q è la somma delle cariche positive e di quelle negative che attraversano S. xxxxxx 5D

L'intensità di corrente Per esempio: se in t = 0,10 s passa una carica Q = 0,050 C, l'intensità di corrente i è: L'unità di misura nel S.I. è l'ampere (A): una corrente di 1 A trasporta 1 C al secondo. Strumenti di misura: amperometro analogico e digitale xxxxxx 5D

Il verso della corrente Per convenzione, il verso della corrente elettrica è quello in cui si muovono le cariche positive: la corrente si muove da punti a potenziale maggiore verso punti a potenziale minore; il moto degli elettroni in un metallo avviene nel verso opposto a quello fissato per la corrente convenzionale. xxxxxx 5D

Dalla definizione di i si ha: La corrente continua Una corrente si dice continua quando la sua intensità è costante nel tempo. Su alimentatori a corrente continua o altri dispositivi (es. pila stilo) compare l'indicazione “DC” (direct current). Dalla definizione di i si ha: In corrente continua, la carica Q e il tempo t sono direttamente proporzionali. xxxxxx 5D

2. I generatori di tensione e i circuiti elettrici Un dislivello in un fluido determina una corrente di liquido che continua finché la differenza di livello non si annulla. xxxxxx 5D

I generatori di tensione e i circuiti elettrici Un dislivello di liquido provoca una corrente; in modo simile, la differenza di potenziale V causa una corrente elettrica: essa fluisce finché V = 0; la pompa idraulica ristabilisce il dislivello portando il liquido dal livello più basso a quello più alto; analogamente, un generatore di tensione mantiene ai suoi capi un V costante nel tempo. xxxxxx 5D

I generatori di tensione e i circuiti elettrici Si chiama generatore ideale di tensione continua un dispositivo che mantiene ai suoi capi un V costante, per un tempo indeterminato, indipendentemente dalla corrente che fluisce. Il suo funzionamento è analogo a quello della pompa idraulica: preleva le cariche positive (convenzionali) dai punti a potenziale più basso (-) per riportarle ai punti a potenziale maggiore (+). xxxxxx 5D

I circuiti elettrici Un circuito elettrico è un insieme di conduttori connessi in modo continuo e collegati a un generatore. xxxxxx 5D

Ciascun elemento di un circuito è rappresentato da un simbolo. I circuiti elettrici Ciascun elemento di un circuito è rappresentato da un simbolo. Se il circuito è chiuso (senza interruzioni) c'è passaggio di corrente; se è aperto non vi fluisce corrente. xxxxxx 5D

Collegamento in serie Più conduttori sono connessi in serie se sono posti in successione tra loro. In essi fluisce la stessa corrente elettrica. xxxxxx 5D

Collegamento in parallelo Più conduttori sono connessi in parallelo se hanno sia le prime che le seconde estremità connesse tra loro. Ai loro capi c'è la stessa differenza di potenziale. xxxxxx 5D

Collegamento in serie e parallelo Le lampadine dell'albero di Natale sono connesse in serie: se una si rompe, il circuito si apre, non passa più corrente e tutte si spengono; gli elettrodomestici dell'impianto di casa sono connessi in parallelo: sono tutti indipendenti. xxxxxx 5D

3. La prima legge di Ohm Vediamo sperimentalmente come varia l'intensità di corrente in un conduttore, quando varia V ai suoi capi. xxxxxx 5D

I conduttori hanno comportamenti molto vari: La prima legge di Ohm Otteniamo la curva caratteristica del conduttore riportando i dati in un grafico V-i. I conduttori hanno comportamenti molto vari: xxxxxx 5D

La prima legge di Ohm G.S. Ohm scoprì che per molti conduttori, tra cui i metalli e le soluzioni di acidi, basi e sali, la curva caratteristica è una retta che passa per l'origine: tali conduttori sono detti ohmici. xxxxxx 5D

La retta passante per l'origine rappresenta la La prima legge di Ohm La retta passante per l'origine rappresenta la Prima legge di Ohm: nei conduttori ohmici l'intensità di corrente è direttamente proporzionale alla differenza di potenziale applicata ai loro capi. La resistenza elettrica R si misura in ohm (): xxxxxx 5D

LA RESISTENZA ELETTRICA Definisco una nuova grandezza detta RESISTENZA R del conduttore, tale che: R misura la DIFFICOLTA’ da parte del conduttore a far passare I xxxxxx

I resistori Un conduttore ha la resistenza di 1 ohm quando viene attraversato dalla corrente di 1 A, se sottoposto alla differenza di potenziale di 1 V. I componenti elettrici che seguono la prima legge di Ohm sono chiamati resistori; negli schemi elettrici, un resistore viene rappresentato dal simbolo in figura: xxxxxx 5D

INTERPRETAZIONE MICROSCOPICA DI R Microscopicamente una carica è ostacolata nel suo moto entro conduttore Dalle altre cariche Dai protoni dei nuclei URTI dei portatori di corrente contro il reticolo cristallino del conduttore xxxxxx

misurata da R DA COSA DIPENDE TALE DIFFICOLTA’? Caratt.fisiche del conduttore (tipo e disposizione dei legami, dislocazione dei nuclei) Lunghezza l del conduttore (l , R ) Sezione S del conduttore (S , R) xxxxxx

SECONDA LEGGE DI OHM  = RESISTIVITA’del materiale (rende conto della dip. di R dal materiale e dalla sua T)  dipende da T xxxxxx 5D

 = 0(1+T) Dipendenza di  da T Se T è alta, il materiale ha particelle con grande agitazione termica  più difficile moto cariche all’interno e quindi  deve aumentare  = 0(1+T) xxxxxx 5D

4. I resistori in serie e in parallelo La resistenza equivalente Req di una rete di resistori è quella di un singolo resistore che, sottoposto alla stessa V, assorbe dal generatore la stessa i. Se chiamiamo ieq la corrente assorbita, si ha: xxxxxx 5D

L'intensità della corrente in entrambi i conduttori è uguale: Resistori in serie L'intensità della corrente in entrambi i conduttori è uguale: xxxxxx 5D

Resistori in serie Invece il V totale è la somma delle singole differenze di potenziale ai capi di R1 e R2: Poiché è e , si ha: , dunque xxxxxx 5D

Nel caso di due resistori in serie, è: Req= R1 + R2. Generalizzando al caso di n resistori in serie, si ottiene che la resistenza equivalente di più resistori posti in serie è uguale alla somma delle resistenze dei singoli resistori: Ogni resistore aggiunto aumenta la resistenza totale, perché è un ulteriore ostacolo al passaggio della corrente elettrica. xxxxxx 5D

Resistori in parallelo La corrente erogata dal generatore è uguale alla somma delle correnti nei due resistori: xxxxxx 5D

Resistori in parallelo Possiamo dimostrare che: l'inverso della resistenza equivalente di più resistori posti in parallelo è uguale alla somma degli inversi delle resistenze dei singoli resistori: xxxxxx 5D

Resistori in parallelo Per due resistori si ha: e poiché otteniamo Ogni resistore aggiunto diminuisce la resistenza totale, perché offre una possibilità in più al passaggio della corrente elettrica. xxxxxx 5D

nodo: punto in cui convergono più conduttori; 5. Le leggi di Kirchhoff Valgono per tutti i circuiti ohmici e servono per risolvere i circuiti, ossia per stabilire i valori di i e V relativi a ciascun resistore. Definiamo: nodo: punto in cui convergono più conduttori; maglia: tratto chiuso di circuito; una maglia è fatta di più rami che connettono vari nodi. nodo maglia xxxxxx 5D

Prima legge di Kirchhoff o legge dei nodi: La legge dei nodi Prima legge di Kirchhoff o legge dei nodi: la somma delle intensità di corrente entranti in un nodo è uguale alla somma di quelle uscenti. Considerando positive le correnti entranti e negative quelle uscenti, si ha: dove la sommatoria è su tutte le correnti del nodo. La legge segue dal principio di conservazione della carica elettrica. xxxxxx 5D

Seconda legge di Kirchhoff o legge delle maglie: La legge delle maglie Seconda legge di Kirchhoff o legge delle maglie: la somma algebrica delle differenze di potenziale che si incontrano percorrendo una maglia è uguale a zero. Infatti, camminando su un percorso chiuso, si ritorna allo stesso potenziale di partenza. xxxxxx 5D

6. La trasformazione dell'energia elettrica Alcuni elettrodomestici contengono un resistore che si scalda quando è attraversato da corrente. xxxxxx 5D

La trasformazione dell'energia elettrica Effetto Joule: l'energia potenziale elettrica si trasforma in energia cinetica delle molecole del conduttore. La temperatura aumenta, l'energia elettrica diventa calore. Potenza dissipata dal resistore, P: è la rapidità con cui l'energia elettrica è trasformata in energia interna del resistore. Vale la legge: xxxxxx 5D

Dimostrazione della formula per la potenza dissipata Per un resistore di estremi A,B e resistenza R la prima legge di Ohm dice che: La corrente i che attraversa il resistore, in un tempo t porta la carica: Il lavoro fatto dal campo elettrico per spostare q è: Quindi la potenza è data da: xxxxxx 5D

Il kilowattora Ricordiamo che l'unità di misura della potenza nel S.I. è il watt (W): 1 W = 1 J / 1 s, quindi 1 J = 1 W x 1s; i consumi di energia elettrica generalmente non sono espressi in joule, ma in kilowattora (kWh): un kilowattora è l'energia assorbita in un'ora da un dispositivo che assorbe una potenza di 1000 W: xxxxxx 5D

7. La forza elettromotrice All'interno di un generatore vi sono forze che lavorano contro il campo elettrico, per riportare le cariche positive verso il polo “+” e gli elettroni verso il polo “–”. La forza elettromotrice fem di un generatore è il rapporto tra il lavoro W compiuto per spostare una carica q al suo interno e la carica stessa: xxxxxx 5D

La forza elettromotrice Esempio: una pila da 9 V compie un lavoro di 9 J per spostare al suo interno 1 C di carica positiva dal polo – al polo +. La forza elettromotrice di un generatore ideale di tensione è la differenza di potenziale che esso mantiene ai suoi estremi; per un generatore reale la forza elettromotrice è uguale alla massima tensione che si può avere tra i suoi poli. xxxxxx 5D

La forza elettromotrice Quando circola corrente in un generatore reale, parte dell'energia fornita serve a vincere la resistenza al moto delle cariche nel suo interno. xxxxxx 5D

Il generatore reale di tensione Per descrivere questo calo di tensione associamo ad ogni generatore reale una resistenza interna r: r misura l'impedimento al moto delle cariche all'interno del generatore; ogni generatore reale può essere modellizzato come un generatore ideale collegato in serie ad una opportuna resistenza interna r. xxxxxx 5D

Il generatore reale di tensione V è la differenza di potenziale ai capi del generatore reale, fem è quella ai capi del generatore ideale. Per la prima legge di Ohm: Per la seconda legge di Kirchhoff: xxxxxx 5D

Il generatore reale di tensione si ottiene quindi (mettendo a fattore comune i tra gli ultimi due termini dell'equazione): Sostituendo quest'espressione nella legge di Ohm si ha infine: Nel caso reale r  0, è dunque V < fem; si ha V = fem solo se r = 0 o se R (circuito aperto). xxxxxx 5D