Ordinamento in tempo lineare Il limite inferiore Ω(n log n) vale per tutti gli algoritmi di ordinamento generali, ossia per algoritmi che non fanno alcuna.

Slides:



Advertisements
Presentazioni simili
Problema dellordinamento Input: Sequenza di n numeri Output: Permutazione π = tale che: a 1 a 2 …… a n Subroutine in molti problemi E possibile effettuare.
Advertisements

Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
                      Insertion-Sort
Unità G3 Algoritmi notevoli. Ordinamento Un insieme di dati {a0, a1, a2, …, an} si dice ordinato in ordine crescente se a0 a1 a2 a3 … an I dati sono generalmente.
Universita di Camerino
Lez. 131 Universita' di Ferrara Facolta' di Scienze Matematiche, Fisiche e Naturali Laurea Specialistica in Informatica Algoritmi Avanzati Rappresentazione.
Hash Tables Indirizzamento diretto Tabelle Hash Risoluzioni di collisioni Indirizzamento aperto.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Heap Sort. L’algoritmo heap sort è il più lento di quelli di ordinamento O(n * log n) ma, a differenza degli altri (fusione e quick sort) non richiede.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Ordinamenti lineari.
Algoritmo di Ford-Fulkerson
Il problema del minimo albero ricoprente in un grafo con archi privati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 4 Ordinamento:
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 4 Ordinamento:
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Usa la tecnica del.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Capitolo 4 Ordinamento Algoritmi e Strutture Dati.
Corso di Informatica (Programmazione)
Algoritmi e Strutture Dati (Mod. A)
Alberi di Ricorrenza Gli alberi di ricorrenza rappresentano un modo conveniente per visualizzare i passi di sostitu- zione necessari per risolvere una.
Algoritmi e Strutture Dati (Mod. B)
Ordinamento di una lista: bubble-sort
1 2. Analisi degli Algoritmi. 2 Algoritmi e strutture dati - Definizioni Struttura dati: organizzazione sistematica dei dati e del loro accesso Algoritmo:
Ricerca della Legge di Controllo
Algoritmi di ordinamento
07/04/2003Algoritmi Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare se un elemento fa parte della sequenza oppure.
ITERAZIONE e RICORSIONE (eseguire uno stesso calcolo ripetutamente)
Heap binari e HeapSort.
QuickSort Quick-Sort(A,s,d) IF s < d THEN q = Partiziona(A,s,d) Quick-Sort(A,s,q-1) Quick-Sort(A,q + 1,d)
COMPLESSITÀ DEGLI ALGORITMI
Elementi di Informatica di base
Ordinamento dell’array
Esercizio 10.* Un cassiere vuole dare un resto di n centesimi di euro usando il minimo numero di monete. a) Descrivere un algoritmo goloso per fare ciò.
Strutture dati per insiemi disgiunti
Radix-Sort(A,d) // A[i] = cd...c2c1
Didattica dei Fondamenti dell’Informatica 2 Seconda giornata: progettare un algoritmo corretto, efficiente, e possibilmente ottimo! Guido Proietti
Vedremo in seguito che (n log n) è un limite stretto per il problema dellordinamento. Per ora ci limitiamo a dimostrare che: La complessità nel caso pessimo.
Cerchiamo di rispondere alla seconda domanda 2)La soluzione trovata con lalgoritmo goloso è ottima o esistono anche soluzioni con più di quattro attività?
La complessità media O(n log n) di Quick-Sort vale soltanto se tutte le permutazioni dell’array in ingresso sono ugualmente probabili. In molte applicazioni.
ALGORITMI a.
Algoritmi di Ordinamento
Valutare la difficoltà dei problemi
Complessità del problema Se non facciamo ipotesi sul tipo degli elementi della sequenza le uniche operazioni permesse sono confronti e assegnazioni. Problema.
Algoritmi e Strutture Dati Luciano Gualà
Implementazione di dizionari Problema del dizionario dinamico Scegliere una struttura dati in cui memorizzare dei record con un campo key e alcuni altri.
GLI ALGORITMI VISIBILE SUL BLOG INFORMATICA ANNO SCOLASTICO 2013 / 2014 GABRIELE SCARICA 2°T.
Soluzione 6: Algoritmo Quicksort
TECNICA DIVIDE ET IMPERA
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 4 Ordinamento:
Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Risoluzione dei Problemi (parte 2) Agostino Poggi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl Capitolo 4 Ordinamento:
Codici prefissi Un codice prefisso è un codice in cui nessuna parola codice è prefisso (parte iniziale) di un’altra Ogni codice a lunghezza fissa è ovviamente.
Complessità Computazionale
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Quinta giornata Risolvere efficientemente un problema in P: ancora sulla sequenza di Fibonacci.
Problema dell’Ordinamento. Problema dell’ordinamento Formulazione del problema –Si vuole ordinare una lista di elementi secondo una data proprietà P Esempio:
GLI ALGORITMI DI ORDINAMENTO
Algoritmi e Strutture Dati HeapSort. Select Sort: intuizioni L’algoritmo Select-Sort  scandisce tutti gli elementi dell’array a partire dall’ultimo elemento.
Ordinamento in tempo lineare
Transcript della presentazione:

Ordinamento in tempo lineare Il limite inferiore Ω(n log n) vale per tutti gli algoritmi di ordinamento generali, ossia per algoritmi che non fanno alcuna ipotesi sul tipo degli elementi della sequenza da ordinare. Se facciamo opportune ipotesi restrittive sul tipo degli elementi possiamo trovare algoritmi più efficienti. Naturalmente il limite inferiore banale Ω(n) vale comunque per tutti gli algoritmi di ordinamento.

Algoritmo Counting-Sort Per ordinare un array A Counting-Sort richiede un secondo array B in cui mette la sequenza ordinata e un array ausiliario C[0..k]. Assume che gli elementi dell’array siano interi compresi tra 0 e k con k costante.

C B A C

Counting-Sort(A,B,k) // A contiene a 1,...,a n for i = 0 to k C[i] = 0 for j = 1 to A.length x = A[j], C[x] = C[x] + 1 // C[x] è il numero di elementi a j = x for i = 1 to k C[i] = C[i] + C[i-1] // C[x] è il numero di elementi a j ≤ x for j = A.length downto 1 // i = C[x] è la posizione in B dove // mettere il prossimo a j = x x = A[j], i = C[x], B[i] = x C[x] = C[x] - 1

Counting-Sort(A,B,k) // Complessità for i = 0 to k // C[i] = 0 // for j = 1 to A.length // x = A[j], C[x] = C[x] + 1 // for i = 1 to k // C[i] = C[i] + C[i-1] // for j = A.length downto 1 // x = A[j], i = C[x], B[i] = A[j] // C[x] = C[x] - 1 // Complessità: T CS (n,k) =  (n+k) Se k = O(n) allora T CS (n,k) =  (n)

Osservazione: Nell’ultimo ciclo for dell’algoritmo gli elementi dell’array A vengono copiati nell’array B partendo dall’ultimo Cosa succede se partiamo dal primo?

B A14201'2'0'2" C '

Succede che l’algoritmo è ancora corretto ma gli elementi uguali vengono ricopiati in ordine inverso. Quando un algoritmo di ordinamento mantiene l’ordine iniziale tra due elementi uguali si dice che esso è stabile. L’algoritmo Counting-Sort (con l’ultimo ciclo for decrescente) è stabile.

Algoritmo Radix-Sort Assume che i valori degli elementi dell’array siano interi rappresentabili con al più d cifre in una certa base b. Per ordinare l’array si usa d volte un algoritmo di ordinamento stabile (ad esempio Counting-Sort) per ordinare l’array rispetto a ciascuna delle d cifre partendo dalla meno significativa. Ad esempio interi di d = 5 cifre decimali (b = 10), interi di d = 4 byte (cifre in base b = 256) o stringhe di d caratteri (b = 256).

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Radix-Sort(A,d) // A[i] = c d...c 2 c 1 for j = 1 to d // A è ordinato rispetto alle cifre c j-1...c 1 “usa un algoritmo stabile per ordinare A rispetto alla j-esima cifra” // A è ordinato rispetto alle cifre c j...c 1 // A è ordinato

Radix-Sort(A,d) // Complessità for j = 1 to d “usa Counting-Sort per ordinare A rispetto alla j-esima cifra” Complessità: dove b è la base della numerazione e d è il numero di cifre dei numeri da ordinare.

Dovendo ordinare n numeri di m bit ciascuno possiamo scegliere r < m e suddividere i numeri in d=m/r “cifre” di r bit ciascuna In questo caso la base della numerazione è b=2 r e Radix-Sort richiede tempo Quindi il valore ottimo di r dipende soltanto da n ed è approssimativamente log 2 n. La funzione ha un minimo per r tale che