redditività var. continua classi di redditività ( < 0 ; >= 0)

Slides:



Advertisements
Presentazioni simili
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4 Analisi bivariata. Analisi di connessione, correlazione e di dipendenza in media.
Advertisements

Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
2. Introduzione alla probabilità
Come organizzare i dati per un'analisi statistica al computer?
Dipartimento di Economia
LA VARIABILITA’ IV lezione di Statistica Medica.
STATISTICA DESCRITTIVA
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
5) IL CAMPIONE CASUALE SEMPLICE CON RIPETIZIONE
Variabili casuali a più dimensioni
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Funzione di distribuzione (detta anche cumulativa o di ripartizione)
ANALISI DELLA COVARIANZA
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Regressione logistica
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
IL MODELLO DI REGRESSIONE MULTIPLA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
MODELLO DI REGRESSIONE LINEARE MULTIPLA
CAMPIONAMENTO Estratto dal Cap. 5 di:
La regressione logistica binomiale
Appunti di inferenza per farmacisti
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Funzioni di densità (o di probabilità) congiunte.
Modello di regressione lineare semplice
Determinazione Orbitale di Satelliti Artificiali Lezione 5
Lezione 4 Probabilità.
Lezione 13 Equazione di Klein-Gordon Equazione di Dirac (prima parte)
STATISTICA PER LE DECISIONI DI MARKETING
Regressione Logistica
Regressione logistica
Statistica economica (6 CFU) Corso di Laurea in Economia e Commercio a.a Docente: Lucia Buzzigoli Lezione 5 1.
Le distribuzioni campionarie
STATISTICA PER LE DECISIONI DI MARKETING
QUALCHE LUCIDO DI RIPASSO… 1. Esperimento casuale ( e. aleatorio) risultato Esperimento condotto sotto leffetto del caso: non è possibile prevederne il.
Uso dei Modelli in Statistica
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
Cap. 15 Caso, probabilità e variabili casuali Cioè gli ingredienti matematici per fare buona inferenza statistica.
DATA MINING PER IL MARKETING
Sottospazi vettoriali
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Analisi Bivariata I° Parte.
Regressione Lineare parte 1
Regressione Lineare parte 2 Corso di Misure Meccaniche e Termiche David Vetturi.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: la stima del modello e la sua valutazione, metodi automatici.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13 Regressione Logistica: La stima e l’interpretazione del del modello.
DATA MINING PER IL MARKETING
Lezione B.10 Regressione e inferenza: il modello lineare
Martina Serafini Martina Prandi
IL CAMPIONE.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Lezione 3 Elementi di teoria delle variabili casuali Insegnamento: Statistica Corso di Laurea Magistrale in Matematica Facoltà di Scienze, Università di.
Intervallo di Confidenza Prof. Ing. Carla Raffaelli A.A:
Metodi Quantitativi per Economia, Finanza e Management Lezione n°7.
Intervalli di confidenza
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
TRATTAMENTO STATISTICO DEI DATI ANALITICI
analisi bidimensionale #2
Elementi di teoria delle probabilità
TEST STATISTICI PER SCALE NOMINALI, TASSI E PROPORZIONI Non sempre la variabile aleatoria (risultato sperimentale) è un numero ma è spesso un esito dicotomico.
La covarianza.
L’analisi di regressione e correlazione Prof. Luigi Piemontese.
In alcuni casi gli esiti di un esperimento possono essere considerati numeri naturali in modo naturale. Esempio: lancio di un dado In atri casi si definisce.
Lezione n° 5: Esercitazione
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°12 Regressione Logistica: Le ipotesi del modello, la stima del modello.
Transcript della presentazione:

Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11 Regressione Logistica

redditività var. continua classi di redditività ( < 0 ; >= 0) L’impostazione del problema Redditività = ricavi - costi redditività var. continua classi di redditività ( < 0 ; >= 0) 1

L’impostazione del problema Redditività var. dicotomica Pr (Y=1 | X) Il modello di regressione lineare è inadeguato quando la variabile risposta è dicotomica, poiché in non garantisce il rispetto del campo di variazione [0,1] Regressione Logistica 1

Il modello di regressione logistica La regressione logistica appartiene alla categoria dei Modelli Lineari Generalizzati. Consente di prevedere una variabile discreta, che può essere intesa come l’appartenenza a un gruppo, a partire da un insieme di variabili (continue, discrete, dicotomiche). Generalmente, la variabile dipendente, o variabile risposta, è dicotomica e rappresenta una assenza/presenza o un fallimento/successo. Modello di Churn (evento: abbandono) Modello di propensity (evento: acquisto) Esempi: Il modello di regressione logistica

Il modello di regressione logistica Le ipotesi del modello n unità statistiche vettore colonna (nx1) di n misurazioni su una variabile dicotomica (Y) matrice (nxp) di n misurazioni su p variabili quantitative (X1,…,Xp) la singola osservazione è il vettore riga (yi,xi1,xi2,xi3,…,xip) i=1,…,n

Il modello di regressione logistica Le ipotesi del modello Y, la variabile dipendente dicotomica, indica la presenza o l’assenza di una particolare caratteristica. Y assume valore 1 con probabilità π e valore 0 con probabilità 1-π. Y si distribuisce come una variabile casuale bernoulliana di parametro π, che descrive l’esito di un esperimento casuale che ha probabilità di risultare in “successo” con probabilità pari a π.

Il modello di regressione logistica Le ipotesi del modello Nell’ambito della regressione logistica si ipotizza che π: Pr(Y=1 l X) sia definito dalla seguente forma funzionale: Funzione Logistica

Il modello di regressione logistica Le ipotesi del modello Il modello logistico gode di alcune importanti proprietà: Rispetta il vincolo che il valore stimato di π: Pr(Y=1 l X) sia compreso nell’intervallo [0,1]; La forma ad «esse» della funzione logistica garantisce un avvicinamento graduale ai valori estremi 0 e 1; La funzione logit di π: log[π/(1- π)] è esprimibile come combinazione lineare delle variabili indipendenti X1,.., Xk:

Il modello di regressione logistica Le ipotesi del modello Si dimostra che equivale a LOGIT LOGISTICA (che è l’inverso del logit)

Il modello di regressione logistica La stima del modello Analogamente al modello di regressione lineare, la relazione tra la variabile dipendente e le indipendneti è nota a meno del valore dei parametri: E’ necessario fare delle ipotesi sulla componente erratica modello E’ necessario un metodo che permetta di ottenere delle “buone” stime dei parametri sulla base delle osservazioni campionarie disponibili. Il metodo si basa sulla massimizzazione della prob di osservare l’insieme di dati osservato in funzione di beta. La verosimiglianza è la probabilità del campione osservato