Un’applicazione del principio di inerzia per il moto rotatorio Il pendolo di torsione Un’applicazione del principio di inerzia per il moto rotatorio Questo è praticamente identico a Es630
Il pendolo di torsione consiste di un corpo sospeso tramite un filo di fibra come nella figura, tale che la linea OC passi per il CM. Quando il corpo ruota di un angolo rispetto alla posizione di equilibrio, il filo viene attorcigliato, esercitando un momento meccanico sul corpo.Tale momento meccanico si oppone allo spostamento e, se la torsione è piccola ha un modulo proporzionale a : =-k Alonso 13.9 (i) Osservare che tanto maggiore è I,tanto più lungo è il periodo. ( maggiore è l’inerzia, tanto più difficile per il momento elastico di torsione muovere il corpo). Tanto maggiore il coeff di torsione,tanto più breve il periodo il che vuol dire tanto più rapido il moto. Metodo usato per misurare I. È possibile misurare k in base alle caratteristiche geometriche e fisiche del filo. Se il corpo viene lasciato andare,il momento meccanico provoca l’oscillazione del corpo attorno alla retta OC, con moto armonico semplice.
principio di inerzia per il moto rotatorio pendolo di torsione principio di inerzia per il moto rotatorio modulo del momento torcente per piccole torsioni k coefficiente di torsione I momento di inerzia rispetto l’asse di rotazione Alonso 13.9 Tanto maggiore è il momento di Inerzia tanto più lungo è il periodo di moscillazione.in quanto è più difficile per il momento torcente far muovere il corpo. Inoltre tanto maggiore è k tanto maggiore il momento torcente e tanto minore è il periodo di oscillazione, cioè è più rapido il suo movemento oscillatorio Periodo di oscillazione
Calcolo del periodo di oscillazione del pendolo di torsione equazione del moto rotatorio del pendolo di torsione: ripassare fisica I !! k coefficiente di torsione I momento di inerzia rispetto l’asse di rotazione moto armonico semplice
Applicazioni della misurazione del periodo del pendolo di torsione misura del momento di inerzia di un corpo, nota la costante k del filo misura della costante k del filo, noto il momento di inerzia del corpo
Il pendolo fisico o composto. Qualsiasi corpo fisico che possa oscillare liberamente attorno ad un asse orizzontale sotto l’effetto della gravità. Per oscillazioni di piccola ampiezza il corpo si muove di moto armonico semplice. Periodo K =raggio giratorio Il periodo del pendolo fisico è indipendente dalla sua massa e dalla sua forma geometrica fino a che il rapporto K2/b rimane costante Alonso Finn 13.9 Il periodo del pendolo fisico è indipendente dalla sua massa e dalla sua forma geometrica fino a che il rapporto aìK2/b rimane costante ZZ’ asse orizzontale C centro di massa b distanza di Cda ZZ’ Lunghezza equivalente l= lunghezza del pendolo semplice che ha lo stesso periodo
moto armonico semplice Calcolo del periodo del pendolo composto, per oscillazioni di piccola ampiezza moto armonico semplice Osservazioni: il piano formato da mg ( il peso) e la retta OO’ su cui giace OC, braccio di leva, è perpendicolare alla retta di rotazione ZZ’. è diretto come l’asse ZZ’. ripassare fisica I !!
Esercizio Un anello di raggio 0,10m è sospeso su una sbarra, come mostrato in figura. Determinare il periodo di oscillazione distanza CM dal centro di rotazione O periodo raggio giratorio del sistema momento di inerzia attorno all’asse diviso massa del sistema TEOREMA ASSI PARALLELI PER CALCOLO I teorema assi paralleli
Energia cinetica rotante Relazione con validità generale 542, ultima slide Ohanian pag 416