Corso di Laurea in Scienze e tecniche psicologiche

Slides:



Advertisements
Presentazioni simili
ANALISI della VARIANZA FATTORIALE
Advertisements

Test delle ipotesi Il test consiste nel formulare una ipotesi (ipotesi nulla) e nel verificare se con i dati a disposizione è possibile rifiutarla o no.
I TEST DI SIGNIFICATIVITA' IL TEST DI STUDENT
L’Analisi della Varianza ANOVA (ANalysis Of VAriance)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Intervalli di confidenza
Lanalisi della varianza Obiettivo: studiare le relazioni tra variabili discrete, che definiscono delle categorie e variabili continue. Esempi: Confronti.
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Presupposti alla lezione
Confronto tra 2 campioni Nella pratica è utilissimo confrontare se 2 campioni provengono da popolazioni con la stessa media: Confronti tra produzioni di.
Analisi dei dati per i disegni ad un fattore
Il modello di analisi dei dati nei disegni within.
Teorema del limite centrale …dimostra che la distribuzione campionaria delle medie si approssima alla distribuzione normale qualunque sia la forma delle.
Gli errori nell’analisi statistica
Levels of constraint I vincoli (o livelli di costrizione) sono i condizionamenti impiegati dalla ricerca.
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Test Statistici Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.
DIFFERENZA TRA LE MEDIE
Analisi della varianza (a una via)
Appunti di inferenza per farmacisti
Corso di biomatematica lezione 10: test di Student e test F
Corso di biomatematica lezione 7-2: Test di significatività
STATISTICA a.a PARAMETRO t DI STUDENT
Parte I (introduzione) Taratura degli strumenti (cfr: UNI 4546) Si parla di taratura in regime statico se lo strumento verrà utilizzato soltanto per misurare.
Analisi della varianza
Il test di ipotesi Cuore della statistica inferenziale!
Verifica delle ipotesi su due campioni di osservazioni
L’Analisi della Varianza (o ANOVA)
Le distribuzioni campionarie
Regressione e correlazione
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
Esame di Analisi Multivariata dei Dati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3.
Elementi di Statistica medica Pasquale Bruno Lantieri, Domenico Risso, Giambattista Ravera Copyright © 2007 – The McGraw-Hill Companies s.r.l. SIGNIFICATIVITÀ.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Domande riepilogative per l’esame
Lezione B.10 Regressione e inferenza: il modello lineare
Un insieme limitato di misure permette di calcolare soltanto i valori di media e deviazione standard del campione, ed s. E’ però possibile valutare.
Accenni di analisi monovariata e bivariata
Corso di Analisi Statistica per le Imprese
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati Introduzione all’analisi fattoriale.
Corso di Laurea in Scienze e Tecniche psicologiche
Analisi Multivariata dei Dati
L’analisi della varianza
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati General linear model e mixed.
Test basati su due campioni Test Chi - quadro
“Teoria e metodi della ricerca sociale e organizzativa”
Corso di Laurea in Scienze e tecniche psicologiche
Accenni di analisi monovariata e bivariata
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
Dalmine, 26 Maggio 2004 Esercitazioni di Statistica con Matlab Dott. Orietta Nicolis fttp:\ingegneria.unibg.it.
Disegni ad un fattore tra i soggetti. Disegni ad un solo fattore between Quando i livelli del trattamento possono influenzarsi reciprocamente è necessario.
ANALISI E INTERPRETAZIONE DATI
STATISTICHE DESCRITTIVE
analisi bidimensionale #2
ANALISI DELLA VARIANZA (ANOVA)
Correlazione e regressione lineare
Test dell’ ANOVA L EZIONI III PARTE F ONDAMENTI E METODI PER L ’ ANALISI EMPIRICA NELLE SCIENZE SOCIALI A. A
La covarianza.
2) Lo studio dell‘efficacia Omar Gelo, Ph.D.. I passi di uno studio di efficacia 1)Costituzione dei gruppi (veri esperim.: randomizzazione) o contatto.
Regressione semplice e multipla in forma matriciale Metodo dei minimi quadrati Stima di beta Regressione semplice Regressione multipla con 2 predittori.
L’ecologia è oggi sempre più una disciplina che enfatizza lo studio olistico del sistema. Anche se il concetto che l’intero possa essere più della somma.
INTRODUZIONE ALL’ANALISI DELLA VARIANZA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Test di ipotesi.
1 Corso di Laurea in Scienze e Tecniche psicologiche Esame di Psicometria Il T-Test A cura di Matteo Forgiarini.
Transcript della presentazione:

Corso di Laurea in Scienze e tecniche psicologiche Esame di Psicometria L’anova fattoriale between A cura di Matteo Forgiarini Matteo.forgiarini@unimib.it

Esercitazione N° 4 – L’anova between Il test anova Esercitazione N° 4 – L’anova between Spesso per scopi di ricerca siamo interessati a stabilire se due popolazioni indipendenti in media mostrano valori statisticamente diversi per la stessa variabile osservata – misurata su scala ordinale. Nelle precedenti analisi abbiamo affrontato e risolto questo problema mediante il t-test: abbiamo confrontato le due medie osservate sui due differenti campioni e analizzando la significatività del valore t sperimentale, abbiamo potuto decidere se accettare o rifiutare l’ipotesi nulla di uguaglianza delle due medie. Ma... Se si volessero confrontare contemporaneamente i valori medi di più di due campioni? Ad esempio, in riferimento al file “competenze.sav”, è possibile domandarsi se i soggetti nati prima del 1948, tra il 1948 e il 1954 e i dopo il 1954, abbiano in media la stessa pressione massima. È un tipo di domanda frequente in molte ricerche: di fatto stiamo cercando di capire se il fattore “età” influisce sulla variabile “pressione massima”; ovvero se nelle 3 differenti fasce di età i soggetti hanno in media la stessa pressione o se le medie differiscono significativamente. In questo caso non è possibile utilizzare i modelli di regressione perché la V.I. non è quantitativa. Per rispondere a questo tipo di domande occorre utilizzare il test anova.

Esercitazione N° 4 – L’anova between Il test anova Esercitazione N° 4 – L’anova between Occorre utilizzare l’anova ogni volta che: Si vuole sapere se una V.D. (misurata su scala a rapporto o a intervallo) presenta valori medi uguali nei diversi livelli di un a V.I. (misurata su scala qualsiasi). Cioè: Si vuole sapere se una variabile categoriale influisce su una variabile quantitativa. Ogni livello della V.I. forma un gruppo di soggetti: dunque ogni livello della V.I. ha un proprio valore medio della V.D. La V.I. ha più di due livelli: dunque occorre confrontare contemporaneamente più di due medie. Se la V.I. ha 2 livelli, è indifferente utilizzare l’anova o il t-test (cfr. diapositive successive). Indicando con µ1, µ2, … µk le medie della V.D. nei k livelli della V.I., l’ipotesi nulla del test anova risulta: H0: µ1= µ2=…= µk H1: µ i≠ µj per almeno una coppia di livelli della V.I. (i e j indicano 2 generici livelli della V.I.)

Esercitazione N° 4 – L’anova between Il t-test e l’anova Esercitazione N° 4 – L’anova between Se la V.I. presenta due livelli, il t-test e l’anova permettono di rispondere allo stesso tipo di domanda, infatti: In riferimento al file “competenze.sav” ipotizziamo di dividere in due grandi classi di età (di uguale numerosità) i soggetti e di chiederci se i soggetti giovani in media hanno la stessa pressione massima dei soggetti più anziani. Abbiamo selezionato l’opzione per ottenere il valore – ovvero la mediana - della variabile “anno di nascita” che divide il campione totale in due sotto-campioni di uguale numerosità. Possiamo quindi costruire una nuova variabile per eseguire il t-test e l’anova.

Esercitazione N° 4 – L’anova between Il t-test e l’anova Esercitazione N° 4 – L’anova between Con “ricodifica in una nuova variabile” a partire dalla variabile “nascita” creiamo la variabile “nasc_2f”, creiamo cioè una variabile che indica le due fasce di età dei soggetti: la nuova variabile assume valore 1 per soggetti nati prima del 1951 e assume valore 2 per tutti gli altri soggetti più giovani. Ipotizziamo di volere sapere se la variabile pressione sanguigna assume in media lo stesso valore nei due livelli della variabile nasc_2f. Ovvero ci stiamo chiedendo se la variabile età influisce sulla variabile pressione sanguigna. Per rispondere a questa domanda possiamo usare sia il t-test sia l’anova, perché? Perché stiamo confrontando contemporaneamente i valori medi di 2 livelli della V.I. H0: µ1= µ2 H1: µ1≠ µ2

Esercitazione N° 4 – L’anova between Il t-test e l’anova Esercitazione N° 4 – L’anova between Eseguiamo il t-test per campioni indipendenti utilizzando come variabile di gruppo “nasc_2f” e come variabile dipendente “pressione massima”. Il t-test risulta significativo, è possibile rifiutare l’ipotesi nulla e concludere che la pressione sanguigna nelle persone “più giovani” è significativamente maggiore che negli “anziani”.

Esercitazione N° 4 – L’anova between Il t-test e l’anova Esercitazione N° 4 – L’anova between Il test dell’anova risulta significativo (p-value<0,05): come per il t-test, possiamo concludere che in media la pressione sanguigna nei soggetti “più giovani” è statisticamente maggiore rispetto ai soggetti “più anziani”. È interessante notare che il livello di significatività ottenuto è il medesimo che abbiamo ottenuto con il t-test. È importante notare però che l’anova si basa sul test F: infatti vengono confrontate le varianze tra i gruppi (between) ed entro i gruppi (within).

Partizione della varianza Tra gruppi (SSM) Varianza totale (SST) = Entro i gruppi (SSR) Come decido se la variazione legata al trattamento (variabilità osservata tra i gruppi) è superiore a quella non legata al trattamento? Al test statistico è associato un valore di significatività = un valore di probabilità di ottenere quel risultato – o risultati più estremi – per effetto del caso

Rappresentazione grafica B B B W W W

Alcuni esempi B F1=B/W W B=, W> F2<F1 B>, W= F3>F1

Esercitazione N° 4 – L’anova between Come ipotizzato all’inizio, dividiamo ora i soggetti in tre grandi fasce di età di numerosità omogenea. Dagli output notiamo che un terzo dei soggetti è nato prima del 1948, un terzo tra il ’48 e il ’54 e il restante 33% è nato dopo il 1954.

Esercitazione N° 4 – L’anova between Possiamo quindi costruire una nuova variabile “nasc_3f” che divide i soggetti in tre grandi fasce di età e che assume: Valore 1 se i soggetti sono nati prima del 1948, Valore 2 se i soggetti sono nati dal 1948 al 1954 Valore 3 se i soggetti sono nati dopo il 1954. Possiamo quindi eseguire il test dell’anova e confrontare le medie della variabile “pressione massima” all’interno dei tre livelli di età che abbiamo creato.

Esercitazione N° 4 – L’anova between H0: µ1= µ2= µ3 H1: esiste almeno una coppia di livelli in cui le medie della “pressione sanguigna” hanno una differenza statisticamente significativa. Il test risulta significativo (p-value<0,05). Possiamo rifiutare l’ipotesi nulla e concludere che la variabile età ha influenza sulla variablile pressione sanguigna: in altri termini esiste una coppia di livelli della V.I. per i quali le due medie di gruppo hanno una differenza significativa. Ma... Con 3 livelli della V.I. esistono 3 coppie di medie, qual è la coppia che rende significativo l’anova? Ne esiste più di una? Andiamo a scoprirlo... Gradi di libertà Varianza within Varianza between

Esercitazione N° 4– L’anova between Per capire quale coppia di fasce di età ha reso significativo l’anova, occorre eseguire i test post hoc. I test post hoc confrontano contemporaneamente le n*(n-1)/2 coppie di medie della V.D. (con n pari al numero di livelli della V.I.). Ma... Il confronto contemporaneo altera il livello di significatività dei test: il livello alfa (generalmente pari a 0,05) viene “gonfiato” rendendo quindi più elevato il rischio di commettere l’errore di I tipo. Occorre quindi mettere in atto strategie che permettano di controllare il valore di alfa: negli esempi proposti verrà usata la correzione di Tukey. I problemi che si incontrano confrontando contemporaneamente più di 2 medie, sono gli stessi problemi che impediscono di usare il t-test quando la V.I. ha più di 2 livelli: anche in questo caso il livello alfa si gonfierebbe e aumenterebbe dunque il rischio di commettere l’errore di I tipo.

Esercitazione N° 4 – L’anova between Notiamo che la media 2 risulta significativamente diversa dalla media 3. Gli scarti tra media 1 e media 2 e tra media 1 e 3 non risultano invece significativi. Dagli output possiamo notare che il test anova è risultato significativo poiché una coppia di medie presenta uno scarto statisticamente significativo e rende quindi falsa l’ipotesi nulla di uguaglianza delle 3 medie.