AUTRONICA10.1 Autronica LEZIONE N° 10 Conversione da base 2 a base 8Conversione da base 2 a base 8 Conversione da base 2 a base 16Conversione da base 2.

Slides:



Advertisements
Presentazioni simili
Rappresentazioni numeriche
Advertisements

Rappresentazioni numeriche
Codifica dei Dati Idea: vogliamo rappresentare dati eterogenei utilizzando un linguaggio che l’elaboratore puo’ facilmente manipolare Essenzialmente vogliamo.
Vincenza Ferrara dicembre 2007 Fondamenti di Matematica e Informatica Laboratorio Informatica I anno a.a
Sistemi di numerazione e codici
1 © 1999 Roberto Bisiani Rappresentazione delle informazioni n Occorre un codice n Legato alla tecnologia usata Robustezza Semplicita Economicita.
Informatica 3 Codifica binaria.
Sistemi Elettronici Programmabili
A.S.E.5.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 5 Calcolatori elettronici Rappresentazione dellinformazioneRappresentazione dellinformazione.
Sistemi Elettronici Programmabili
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Fenomeni transitoriFenomeni transitori Somma e differenza di due numeri in C2Somma e differenza.
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Somma e differenza di due numeri in C2Somma e differenza di due numeri in C2 Half AdderHalf.
A.S.E.7.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 7 Errore di rappresentazioneErrore di rappresentazione Fattore di scalaFattore di scala Rappresentazione.
A.S.E.3.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 3 Sistema numericoSistema numerico Base 2, 3, 4, 5, 8, 10, 12, 16Base 2, 3, 4, 5, 8, 10, 12,
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Complemento a MComplemento a M Rappresentazione di numeri con segnoRappresentazione di numeri.
A.S.E.4.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 4 Conversione da base N a base 10Conversione da base N a base 10 Conversione da base 10 a base.
A.S.E.5.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 5 Rappresentazione di numeri con segnoRappresentazione di numeri con segno –Modulo e segno (MS)
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 RIEPILOGO Aritmetica in Base 2RIEPILOGO Aritmetica in Base 2 Interi assolutiInteri assoluti.
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Fenomeni transitoriFenomeni transitori Somma e differenza di due numeri in C2Somma e differenza.
Corso di Informatica (Programmazione)
Corso di Laurea in Biotecnologie Informatica (Programmazione)
by Vaccaro Maria Antonietta
Corso di Informatica per Giurisprudenza
Esistono 10 tipi di persone al mondo: Quelli che conoscono il codice binario & Quelli che non lo conoscono.
Rappresentazione binaria dei numeri interi senza segno.
Gli esseri viventi ricevono informazione direttamente dal mondo circostante e dai propri simili attraverso i sensi (percezione). La percezione, tuttavia,
Codifica binaria Rappresentazione di numeri
Rappresentazione di numeri relativi (interi con segno)
Programma del corso Dati e loro rappresentazione Architettura di un calcolatore Sistemi operativi Linguaggi di programmazione Applicativi: - fogli elettronici.
Conversione binario - ottale/esadecimale
Conversione binario - ottale/esadecimale
1 © 1999 Roberto Bisiani Rappresentazione delle informazioni n Occorre un codice n Legato alla tecnologia usata Robustezza Semplicita Economicita.
CONVERSIONE NUMERI INTERI CON COMPLEMENTO A DUE. I computer di oggi effettuano ogni tipo di operazione numerica, ma le prime ALU degli anni 50 erano in.
Convertitori di Codice
Rappresentazione dell’informazione nel calcolatore.

ARCHITETTURA DEI SISTEMI ELETTRONICI
Informatica Lezione 3 Scienze e tecniche psicologiche dello sviluppo e dell'educazione (laurea triennale) Anno accademico:
ARCHITETTURA DEI SISTEMI ELETTRONICI
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE Codifica binaria dell’informazione Marco D. Santambrogio – Ver. aggiornata al 11.
Fondamenti di Informatica1 Memorizzazione su calcolatore L'unità atomica è il bit (BInary DigiT) L'insieme di 8 bit è detta byte Altre forme di memorizzazione:
Rappresentazione della Informazione
RETI LOGICHE Daniele Manzaroli
Rappresentazioni numeriche. Introduzione Un calcolatore elettronico dispone di uno spazio finito per memorizzare le cifre che esprimono un valore numerico.
Rappresentazione dell’informazione
A.S.E.14.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 14 Sommatori velociSommatori veloci Reti combinatorie frequentiReti combinatorie frequenti ComparatoriComparatori.
ARCHITETTURA DEI SISTEMI ELETTRONICI
Rappresentazione dell’Informazione
Rappresentazione in virgola mobile (floating-point) Permette di rappresentare numeri con ordini di grandezza molto differenti utilizzando per la rappresentazione.
Fondamenti di Informatica
La Rappresentazione dell’Informazione
Rappresentazione dell'informazione
AUTRONICA9.1 Autronica LEZIONE N° 9 Conversione da base 2 a base 8Conversione da base 2 a base 8 Conversione da base 2 a base 16Conversione da base 2 a.
La codifica dei numeri.
Corso di Laurea in Scienze e Tecnologie Chimiche corso di Informatica Generale Paolo Mereghetti DISCo – Dipartimento di Informatica, Sistemistica e Comunicazione.
Conversione binario-ottale/esadecimale
Rappresentazione degli interi
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 CodiciCodici BCDBCD GRAYGRAY ASCIIASCII RIEPILOGO Aritmetica in Base 2RIEPILOGO Aritmetica.
Informatica Lezione 3 Psicologia dello sviluppo e dell'educazione (laurea magistrale) Anno accademico:
Rappresentazione dei dati. RAPPRESENTAZIONE DEI DATI LA FUNZIONE INTERO INTERO: R --> I y = [r] il massimo intero non maggiore di r r =
Codifica binaria dell’informazione
Rappresentazione dei numeri
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE Codifica binaria dell’informazione Marco D. Santambrogio – Ver. aggiornata al 24.
I sistemi di numerazione
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE Numeri con segno ed in virgola Marco D. Santambrogio – Ver. aggiornata al 20 Marzo.
La numerazione ottale. Il sistema di numerazione ottale ha ampio utilizzo in informatica E’ un sistema di numerazione posizionale La base è 8 Il sistema.
© 2015 Giorgio Porcu - Aggiornamennto 09/12/2015 I STITUTO T ECNICO SECONDO BIENNIO T ECNOLOGIE E P ROGETTAZIONE Rappresentazione dell’ Informazione Conversioni.
Rappresentazione delle informazioni negli elaboratori L’entità minima di informazione all’interno di un elaboratore prende il nome di bit (binary digit.
Transcript della presentazione:

AUTRONICA10.1 Autronica LEZIONE N° 10 Conversione da base 2 a base 8Conversione da base 2 a base 8 Conversione da base 2 a base 16Conversione da base 2 a base 16 Conversione da base 8 a base 16Conversione da base 8 a base 16 Aritmetica binaria per numeri positiviAritmetica binaria per numeri positivi Rappresentazione di numeri con segnoRappresentazione di numeri con segno Aritmetica binaria per numeri relativiAritmetica binaria per numeri relativi Rappresentazione BCDRappresentazione BCD

AUTRONICA10.2 Richiami Sistema numericoSistema numerico Base 2, 3, 4, 5, 8, 10, 12, 16Base 2, 3, 4, 5, 8, 10, 12, 16 Conversione da base “N” a base 10Conversione da base “N” a base 10 Conversione da base 10 a base “N”Conversione da base 10 a base “N”

AUTRONICA10.3 Binario => Ottale Dato un numero binarioDato un numero binario FattorizzandoFattorizzando

AUTRONICA10.4 Metodo Basta raggruppare i digit del numero binario (bit) tre a tre e convertire ciascun gruppo nel corrispondente digit ottaleBasta raggruppare i digit del numero binario (bit) tre a tre e convertire ciascun gruppo nel corrispondente digit ottale EsempioEsempio NotaSono stati aggiunti degli zeri in testa e in coda affinché si avessero due gruppi di digit multipli di treNotaSono stati aggiunti degli zeri in testa e in coda affinché si avessero due gruppi di digit multipli di tre

AUTRONICA10.5 Binario => Esadecimale Stesso procedimento del caso precedente, però ora si raggruppano i bit quattro a quattroStesso procedimento del caso precedente, però ora si raggruppano i bit quattro a quattro EsempioEsempio Per le conversioni ottale => binario e esadecimale => binario si opera in modo simile convertendo ciascun digit nel corrispondente numero binarioPer le conversioni ottale => binario e esadecimale => binario si opera in modo simile convertendo ciascun digit nel corrispondente numero binario

AUTRONICA10.6 Ottale => Esadecimale (Esadecimale => Ottale) Conversione intermedia in binarioConversione intermedia in binario EsempioEsempio –Ottale => Esadecimale –Esadecimale => Ottale

AUTRONICA10.7 Aritmetica binaria 1 Somma di due bitSomma di due bit x + yx + y s = Sommas = Somma c = Carry (RIPORTO)c = Carry (RIPORTO) EsempioEsempio xysc carry = 206

AUTRONICA10.8 Aritmetica binaria 2 Sottrazione di due bitSottrazione di due bit x -yx -y d = Differenzad = Differenza b = Borrow (Prestito)b = Borrow (Prestito) EsempioEsempio xydb borrow = 89xysc

AUTRONICA10.9 Aritmetica binaria 3 Prodotto di due bitProdotto di due bit a x ba x b p = Prodottop = Prodotto EsempioEsempio abp x 5 = 65

AUTRONICA10.10 Numeri binari con segno Il numero massimo di bit usato da un calcolatore è noto e fissoIl numero massimo di bit usato da un calcolatore è noto e fisso Solitamente è : 4 o 8 o 16 o 32 (Word)Solitamente è : 4 o 8 o 16 o 32 (Word) 8 bit formano un Byte8 bit formano un Byte Non esiste un apposito simbolo per il segnoNon esiste un apposito simbolo per il segno Si usa il bit più significativo per indicare il segnoSi usa il bit più significativo per indicare il segno 0 = +0 = + 1 = -1 = - Si hanno varie tecniche di codificaSi hanno varie tecniche di codifica Modulo e segnoModulo e segno Complemento a 1Complemento a 1 Complemento a 2Complemento a 2 In traslazione ( cambia la codifica del segno)In traslazione ( cambia la codifica del segno)

AUTRONICA10.11 Varie rappresentazioni su 4 bit Base 10 Mod e seg comp a 1 comp a 2 trasl

AUTRONICA10.12 Modulo e segno Se si dispone di “n” bitSe si dispone di “n” bit Il corrispondente in base 10 èIl corrispondente in base 10 è Il renge dei numeri risultaIl renge dei numeri risulta Esempio n = 4Esempio n = 4

AUTRONICA10.13 Complemento a 1 Se si dispone di “n” bitSe si dispone di “n” bit Il corrispondente in base 10 èIl corrispondente in base 10 è Il renge dei numeri risultaIl renge dei numeri risulta Esempio n = 4Esempio n = 4

AUTRONICA10.14 Complemento a 2 Se si dispone di “n” bitSe si dispone di “n” bit Il corrispondente in base 10 èIl corrispondente in base 10 è Il renge dei numeri risultaIl renge dei numeri risulta Esempio n = 4Esempio n = 4

AUTRONICA10.15 Traslazione Se si dispone di “n” bitSe si dispone di “n” bit Il corrispondente in base 10 èIl corrispondente in base 10 è Il renge dei numeri risultaIl renge dei numeri risulta Esempio n = 4Esempio n = 4

AUTRONICA10.16 Trasformazione da numeri positivi a numeri negativi e viceversa Per la rappresentazione in modulo e segnoPer la rappresentazione in modulo e segno Basta cambiare il bit di segnoBasta cambiare il bit di segno Per la rappresentazione in complemento a 1Per la rappresentazione in complemento a 1 Si complementano tutti bitSi complementano tutti bit Per la rappresentazione in complemento a 2Per la rappresentazione in complemento a 2 Si complementano tutti bit e si somma 1Si complementano tutti bit e si somma 1 Per la rappresentazione in tralazionePer la rappresentazione in tralazione Si somma sempre 2 n-1Si somma sempre 2 n-1

AUTRONICA10.17 Tabella Riassuntiva Con riferimento a una word di “n” bit, si ha:Con riferimento a una word di “n” bit, si ha: K = 2 n K = 2 n H =2 n-1H =2 n-1 W numero in base 2 da convertireW numero in base 2 da convertire W’ numero convertitoW’ numero convertito

AUTRONICA10.18 Modulo e segno Somma [-2 n-1 <(X+Y)<2 n-1 ]Somma [-2 n-1 <(X+Y)<2 n-1 ] * è necessario fare un test sul segno prima di eseguire la somma* è necessario fare un test sul segno prima di eseguire la somma

AUTRONICA10.19 Complemento a 1 Somma [-2 n-1 <(X+Y)<2 n-1 ]Somma [-2 n-1 <(X+Y)<2 n-1 ] Osservare che K non è possibile rappresentarlo su n bitOsservare che K non è possibile rappresentarlo su n bit *è necessario un test sul bit di segno, ma la correzione è facile*è necessario un test sul bit di segno, ma la correzione è facile *se il risultato è negativo è già rappresentato in C. 1*se il risultato è negativo è già rappresentato in C. 1 **è necessario aggiungere 1 per ottenere il risultato in C. 1**è necessario aggiungere 1 per ottenere il risultato in C. 1

AUTRONICA10.20 Esempi Parola di 4 bitParola di 4 bit = 75 + (-3) = 2(-5) + 3 = (-2) = 75 + (-3) = 2(-5) + 3 = (-2) (- 4) +(-3) = =11 (-6) + (-5) =(-11)(- 4) +(-3) = =11 (-6) + (-5) =(-11)

AUTRONICA10.21 Complemento a 2 Somma [-2 n-1 <(X+Y)<2 n-1 ]Somma [-2 n-1 <(X+Y)<2 n-1 ] Osservare che K non è possibile rappresentarlo su n bitOsservare che K non è possibile rappresentarlo su n bit *Per X < |Y| il risultato è rappresentato in C. 2 *Per X < |Y| il risultato è rappresentato in C. 2 **Per Y < |X| il risultato è rappresentato in C. 2**Per Y < |X| il risultato è rappresentato in C. 2 ***Il risultato è rappresentato in C. 2***Il risultato è rappresentato in C. 2

AUTRONICA10.22 Esempi Parola di 4 bitParola di 4 bit = 75 + (-3) = 2(-5) + 3 = (-2) = 75 + (-3) = 2(-5) + 3 = (-2) (- 4) +(-3) = =11 (-6) + (-5) =(-11)(- 4) +(-3) = =11 (-6) + (-5) =(-11)

AUTRONICA10.23 Osservazioni Se la word si estende “K” bit si haSe la word si estende “K” bit si ha per numeri positivi si aggiungono in testa K zeriper numeri positivi si aggiungono in testa K zeri per numeri negativi si aggiungono in testa K unoper numeri negativi si aggiungono in testa K uno EsempioEsempio Word di 4 bit Word di 6 bit

AUTRONICA10.24 OverfloW Parola di 4 bitParola di 4 bit = 75 + (-3) = 2(-5) + 3 = (-2) = 75 + (-3) = 2(-5) + 3 = (-2) (- 4) +(-3) = =11 (-6) + (-5) =(-11)(- 4) +(-3) = =11 (-6) + (-5) =(-11)

AUTRONICA10.25 BCD (Binary-Coded Decimal numbers) Necessità di rappresentare i numeri decimali in codice binarioNecessità di rappresentare i numeri decimali in codice binario 8421 BCD8421 BCD si codifica in binario ciascuna cifra decimale utilizzando i primi 10 numeri binari su 4 bitsi codifica in binario ciascuna cifra decimale utilizzando i primi 10 numeri binari su 4 bit EsempioEsempio è possibile eseguire somme e sottrazioni in BCDè possibile eseguire somme e sottrazioni in BCD

AUTRONICA10.26 BCD – Sette Segmenti Per visualizzare le cifre decimali si usa frequentemente un Display a sette segmentiPer visualizzare le cifre decimali si usa frequentemente un Display a sette segmenti È possibile realizzare un codificatoreÈ possibile realizzare un codificatore BCD SETTE SEGMENTIBCD SETTE SEGMENTI a b c e f d g

AUTRONICA10.27 Tabella di verità La tabella di verità risultaLa tabella di verità risulta 8421abcdefg

AUTRONICA10.28 Conclusioni Sistema numericoSistema numerico Base 2, 3, 4, 5, 8, 10, 12, 16Base 2, 3, 4, 5, 8, 10, 12, 16 Conversione da base “N” a base 10Conversione da base “N” a base 10 Conversione da base 10 a base “N”Conversione da base 10 a base “N” Aritmetica binariaAritmetica binaria Rappresentazione di numeri con segnoRappresentazione di numeri con segno