A.S.E.15.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 15 Sommatori velociSommatori veloci Reti combinatorie frequentiReti combinatorie frequenti ComparatoriComparatori Generatore/verificatore di paritàGeneratore/verificatore di parità
A.S.E.15.2 Richiami Somma e differenza di due numeri inSomma e differenza di due numeri in – Modulo e Segno –Complemento a 1 –Complemento a 2 Half AdderHalf Adder Full AdderFull Adder Sommatori e Sottrattori di due word di n bitSommatori e Sottrattori di due word di n bit
A.S.E.15.3 Tempo di ritardo nel Sommatore T c = ritardo del Carry, T s = ritardo della sommaT c = ritardo del Carry, T s = ritardo della somma T tot = 3T c + T sT tot = 3T c + T s c i+1 FA cici aiai sisi bibi b0b0 a0a0 b1b1 a1a1 c i+1 FA cici aiai sisi bibi b2b2 a2a2 c i+1 FA cici aiai sisi bibi b3b3 a3a3 s0s0 s1s1 s3s3 s2s2 c4c4 c0c0 cici aiai sisi bibi c i+1
A.S.E.15.4 Sommatori veloci Considerazioni sul CarryConsiderazioni sul Carry cicicici aiaiaiai bibibibi sisisisi c i
A.S.E.15.5 Carry Look-Ahead Adder Quindi risultaQuindi risulta C 1 = G 0 + P 0 C 0 C 2 = G 1 + P 1 C 1 = G 1 + P 1 G 0 + P 1 P 0 C 0 C 3 = G 2 + P 2 C 2 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 C in C 4 = G 3 + P 3 C 3 = G 3 + P 3 G 2 + P 3 P 2 G 1 + P 3 P 2 P 1 G P 3 P 2 P 1 P 0 G 0 –I vari Carry possono essere generati simultaneamente
A.S.E.15.6 Blocco base G i = A i B i P i = A i B i S i = P i C iG i = A i B i P i = A i B i S i = P i C i AiAiAiAi BiBiBiBi CiCiCiCi SiSiSiSi PiPiPiPi GiGiGiGi
A.S.E.15.7 Look - Ahead Carry Generator Schema G P C in C2C2C2C2 C1C1C1C1 C0C0C0C0
A.S.E.15.8 Schema del sommatore Look - Ahead Carry Generator G P A B C in C inS G P A B C in C inS G P A B C in C inS G P A B C in C inS G P A B C in C inS G P A B C in C inS G P A B C in C inS G P A B C in C inS S3S3S3S3 S2S2S2S2 S1S1S1S1 S0S0S0S0
A.S.E.15.9 Comparatore Rete combinatoria che esegue il confronto fra due numeri su “k” bitRete combinatoria che esegue il confronto fra due numeri su “k” bit Numeri interi positiviNumeri interi positivi Tre usciteTre uscite –E (A=B) –G (A>B) –L (A<B)
A.S.E Comparatore a 1 bit E A B G A B L A B
A.S.E Schema a 1 bit A B G L E
A.S.E Comparatore a 2 bit E A1A0A1A0 B1B0B1B G A1A0A1A0 B1B0B1B L A1A0A1A0 B1B0B1B0
A.S.E Schema a 1bit modificato A1A1A1A1 G L E B1B1B1B1 L0L0L0L0 E0E0E0E0 G0G0G0G0 E1E1E1E1 L1L1L1L1 G1G1G1G1
A.S.E Schema a 2 bit A1A1A1A1 G L E B1B1B1B1 A0A0A0A0 B0B0B0B0 G L E C-1 L 00 EG 1
A.S.E Osservazione Blocco baseBlocco base –Comparatore a 1 bit con abilitazioni Comparatore a “n+1” bitComparatore a “n+1” bit –Comparatore a “n” bit più comparatore a1 bit
A.S.E Generatore di parità Si impiega (per esempio) per trasmettere a distanza un datoSi impiega (per esempio) per trasmettere a distanza un dato Data una parola a “n” bitData una parola a “n” bit –Deve fornire un “1” se in numero di uno presenti nella parola è dispari –Deve fornire uno “0” se in numero di uno presenti nella parola è pari Si invia la parola di “n” + il bit ti paritàSi invia la parola di “n” + il bit ti parità
A.S.E Osservazione Per una parola di 4 bit si haPer una parola di 4 bit si ha P A3A4A3A4 A1A0A1A D A3A4A3A4 A1A0A1A0
A.S.E Schema Per parola di 4 bitPer parola di 4 bit A3A3 A2A2 A1A1 A0A0 A3A3 A2A2 A1A1 A0A0 P4P4
A.S.E Osservazione La verifica di parità in ricezione è eseguita con una rete equivalente a quella di generazioneLa verifica di parità in ricezione è eseguita con una rete equivalente a quella di generazione Data una parola di “n” bitData una parola di “n” bit –Il Generatore di parità necessita di n-1 XOR –Il Verificatore di parità necessita di n XOR
A.S.E Conclusioni Sommatori velociSommatori veloci Reti combinatorie frequentiReti combinatorie frequenti ComparatoriComparatori Generatore/verificatore di paritàGeneratore/verificatore di parità