Sistemi basati su conoscenza Metodi di ricerca informata Prof. M.T. PAZIENZA a.a. 2001-2002.

Slides:



Advertisements
Presentazioni simili
Algoritmi e Strutture Dati
Advertisements

Ricerca euristica Maria Simi a.a. 2006/ /03/2017
Algoritmi e Strutture Dati
Hash Tables Indirizzamento diretto Tabelle Hash Risoluzioni di collisioni Indirizzamento aperto.
Teoria e Implementazione
Il problema del cammino minimo tra 2 nodi in un grafo con archi privati.
Gestione dei dati e della conoscenza (agenti intelligenti) M.T. PAZIENZA a.a
Sistemi basati su conoscenza Metodi di ricerca informata Prof. M.T. PAZIENZA a.a
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Strutture dati per.
Sistemi basati su conoscenza (agenti intelligenti) Prof. M.T. PAZIENZA a.a
Algoritmi e Strutture Dati
Intelligenza Artificiale 1 Gestione della conoscenza lezione 5 Prof. M.T. PAZIENZA a.a
Scenario Archi di un grafo controllati da agenti egoistici
Sistemi basati su conoscenza Ricerca di soluzioni a problemi Prof. M.T. PAZIENZA a.a
Sistemi basati su conoscenza Ricerca di soluzioni a problemi Prof. M.T. PAZIENZA a.a
Identificazione delle attività
Algoritmi e Strutture Dati
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
Il problema del cammino minimo tra 2 nodi in un grafo con archi privati.
Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati.
STATISTICA a.a METODO DEI MINIMI QUADRATI REGRESSIONE
CONTROLLO DI SUPPLY CHAIN MEDIANTE TECNICHE H-INFINITO E NEGOZIAZIONE
Tempo di computazione (Running Time) di programmi Misure del tempo: Misure del tempo: metodi principali 1.Benchmarking 2.Analisi Benchmarking: usato per.
Studente Claudia Puzzo
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Risoluzione di problemi e ricerca.
Intelligenza Artificiale Risoluzione di Problemi
Intelligenza Artificiale
Metodi numerici per lapprossimazione Laboratorio di Metodi Numerici a.a. 2008/2009 Prof. Maria Lucia Sampoli.
Strutture dati per insiemi disgiunti
PARTE SECONDA: Reti Senza Fili
Algoritmi e Strutture Dati

PARTE PRIMA: Reti Cablate
Algoritmi e Strutture Dati
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 K 4 è planare? Sì!
Prof. Cerulli – Dott.ssa Gentili
Caratteristiche fondamentali del sapere scientifico
Ricerca di soluzioni a problemi Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale 2 Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
La trappola della liquidità
Algoritmi online Maria Simi, a.a. 2007/08 Problemi di esplorazione  Gli agenti per il problem-solving assumono:  ambienti deterministici e osservabili.
Ricerca euristica Maria Simi a.a. 2008/2009 Ricerca euristica  La ricerca esaustiva non è praticabile in problemi di complessità esponenziale  Noi.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Strutture dati per.
Intelligenza Artificiale Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Sistemi basati su conoscenza Ricerca di soluzioni a problemi Prof. M.T. PAZIENZA a.a
1 Ordinamento (Sorting) INPUT: Sequenza di n numeri OUTPUT: Permutazione π = tale che a 1 ’  a 2 ’  … …  a n ’ Continuiamo a discutere il problema dell’ordinamento:
Sistemi basati su conoscenza Metodi di ricerca informata Prof. M.T. PAZIENZA a.a
Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Risoluzione dei Problemi (parte 2) Agostino Poggi.
Sistemi basati su conoscenza (agenti intelligenti) Prof. M.T. PAZIENZA a.a
Ricerca locale M. Simi, Algoritmi di ricerca locale  Efficienti in occupazione di memoria: tengono traccia solo dello stato corrente (non.
Intelligenza Artificiale Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale Risoluzione di Problemi
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Capitolo 1 Un’introduzione informale agli algoritmi Algoritmi e Strutture Dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano.
Intelligenza Artificiale 1 Gestione della conoscenza lezione 14 Prof. M.T. PAZIENZA a.a
Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Risoluzione dei Problemi Agostino Poggi Stefano Cagnoni.
1 Ordinamento (Sorting) Input: Sequenza di n numeri Output: Permutazione π = tale che: a i 1  a i 2  ……  a i n Continuiamo a discutere il problema dell’ordinamento:
Ricerca locale M. Simi, Algoritmi di ricerca locale  Efficienti in occupazione di memoria  tengono traccia solo dello stato corrente (non.
Ricerca euristica Maria Simi a.a. 2005/2006 Ricerca euristica  La ricerca esaustiva non è praticabile in problemi di complessità esponenziale  Noi.
I giochi con avversario Maria Simi a.a. 2008/2009.
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Copyright © The McGraw - Hill Companies, srl 1 Progettare algoritmi.
Sistemi basati su conoscenza Ricerca di soluzioni a problemi Prof. M.T. PAZIENZA a.a
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Sesta giornata Risolvere efficientemente un problema in P: Il problema dell’ordinamento: Insertion.
Algoritmi e Strutture Dati
Sistemi e Tecnologie Informatiche Complessità di calcolo.
6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti
Ricerca euristica Maria Simi a.a. 2013/2014 Ricerca euristica  La ricerca esaustiva non è praticabile in problemi di complessità esponenziale  Noi.
Informatica Problemi e algoritmi. una situazione che pone delle domande cui si devono dare risposte. Col termine problema o situazione problematica s’indica.
ASD a.a.2010/2011- Lezione 12 Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi Backtracking/ Branch and Bound Lezione n°12.
Sistemi basati su conoscenza Metodi di ricerca informata
Transcript della presentazione:

Sistemi basati su conoscenza Metodi di ricerca informata Prof. M.T. PAZIENZA a.a

Strategia di ricerca Le strategia di ricerca non informata trovano soluzioni (spesso non efficienti) a problemi generando sistematicamente nuovi stati che sono poi verificati rispetto all’obiettivo. Le strategia di ricerca informata, utilizzando conoscenza specifica sul problema, trovano soluzioni più efficienti, ovvero riducono il costo della ricerca.

Strategia di ricerca La specifica strategia di ricerca si distingue per la diversa funzione di valutazione usata per determinare il prossimo nodo da espandere. La funzione di valutazione determina il valore di desiderabilità (o non desiderabilità) dell’espansione di ogni specifico nodo.

Algoritmi di ricerca best-first I nodi sono ordinati in modo che venga espanso prima il nodo (che sembra) migliore secondo la funzione di valutazione

Funzioni di valutazione Quando tale valutazione è fornita da una stima (e non viene determinata esattamente) si parla di funzione euristica, quindi La funzione euristica h(n) stima il costo del cammino più conveniente dallo stato del nodo n ad uno stato obiettivo Ogni funzione euristica è specifica al problema

Tecniche euristiche Nei sistemi esperti le tecniche euristiche erano viste come “regole empiriche” che gli esperti del dominio potevano usare per generare “buone soluzioni” senza ricercare esaustivamente. Se le regole euristiche vengono espresse come regole, si parla di sistemi basati su regole.

Tecniche euristiche Euristica è qualunque tecnica che migliora le prestazioni del compito di risoluzione del problema nel caso medio, ma non migliora necessariamente nel caso peggiore. Negli algoritmi di ricerca si riferisce ad una funzione che fornisce una stima del costo della soluzione

Ricerca golosa Una ricerca di best-first che usa h per selezionare il nodo successivo da espandere è detta ricerca golosa. (minimizzare il costo per raggiungere l’obiettivo) Viene espanso prima il nodo giudicato più vicino allo stato obiettivo da una qualunque funzione euristica h purché: h(n)=0 se n è un nodo obiettivo La ricerca golosa è simile ad una ricerca in profondità; segue un cammino fino all’obiettivo, per tornare indietro quando si imbatte in un vicolo cieco.

Ricerca di itinerario (euristica) La distanza in linea d’aria dall’obiettivo, ovvero la distanza in linea d’aria tra n e la posizione dell’obiettivo, viene considerata una buona funzione euristica nella ricerca di un itinerario

Ricerca di itinerario (euristica)

Si può calcolare solo se si conoscono le coordinate dei nodi. Queste ultime (e altre informazioni aggiuntive) permettono alle euristiche di aiutare a ridurre il costo della ricerca

Ricerca di itinerario (euristica)

L’euristica determina un costo di ricerca minimo, trova una soluzione senza mai espandere alcun nodo che non sia sul cammino della soluzione. Non è perfettamente ottimale (ricerca golosa), tende a trovare una soluzione velocemente anche se non ottimale

Ricerca di itinerario (ricerca golosa - euristica) Ricerca non ottimale ed incompleta Può intraprendere un vicolo cieco con ricerca infinita Complessità temporale nel caso peggiore con m profondità massima dello spazio di ricerca e b fattore di ramificazione. Complessità spaziale = complessità temporale (tutti i nodi sono mantenuti in memoria) Una buona funzione euristica può ridurre le due complessità (in funzione della tipologia del problema e natura della funzione h)

Ricerca A* (euristica ammissibile) g(n) = costo del cammino dal nodo iniziale al nodo n h(n) = costo stimato del cammino più conveniente da n all’obiettivo f(n) = g(n) + h(n) f(n) = costo stimato della soluzione più conveniente attraverso n

Ricerca A* (euristica ammissibile) La soluzione più conveniente espande prima il nodo con il valore più basso di f Scegliere la funzione euristica h che non sopravvaluti mai il costo per raggiungere l’obiettivo Se h è ammissibile, f(n) non sopravvaluta mai il costo reale della soluzione migliore attraverso n. Lungo qualsiasi cammino che parte dalla radice, il costo di f non decresce mai (proprietà di monotonia)

Ricerca A* (euristica ammissibile)

Cercare funzioni euristiche Se per un problema esiste una collezione di euristiche ammissibili, e nessuna domina le altre, allora si pone: Usare informazioni statistiche