SMART STRUCTURES: Tipologie, tecnologie ed applicazioni

Slides:



Advertisements
Presentazioni simili
Metalli a memoria di forma - Il Nitinolo e le sue transizioni di fase
Advertisements

PERDITE NEI NUCLEI MAGNETICI
Lenti per la luce f dipende dal raggio di curvatura
Corso dell’A.A Università degli Studi di Trieste
Energia Solare Alice F. S.M.S. “Peyron-Fermi” Sez. OIRM TO
Introduzione alle fibre ottiche
Caratterizzazione di un film sottile mediante differenti tecniche
Cromatografia liquida ad alte prestazioni (HPLC)
MISURE DI VELOCITA’ DEI FLUIDI
Fibra ottica Gennaio 2004 Fibra Ottica.
Tecniche di elaborazione delle immagine
Strumenti di misura della radiazione
Dispositivi optoelettronici (1)
NUOVI MATERIALI I NUOVI MATERIALI POSSONO ESSERE CLASSIFICATI IN QUATTRO SETTORI: METALLI ELEGHE SPECIALI POLIMERI AVANZATI MATERIALI CERAMICI AVANZATI.
TECNOLOGIE DEI SISTEMI DI CONTROLLO
Tecnologia del silicio
 RIASSUNTO DELLE PUNTATE PRECEDENTI
Magnetismo nella materia
OFFSET NELLA CARATTERISTICA DI TRASFERIMENTO DI UN TRASDUTTORE
GENERATORE FOTOVOLTAICO
Colpo d’ariete (cenni)
Studio della Risposta TL e TSC con Fasci di Protoni
ISTITUTO TECNICO INDUSTRIALE G
MATERIALI DI RIVESTIMENTO.
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle.
Preparazione di un modello di auto in fibra di vetro
I Materiali Compositi.
Trasduttori di deformazione
Sensori di temperatura
Tesi di laurea specialistica in ingegneria meccanica
Progettazione di un serbatoio in pressione
LABORATORIO PROVE FUOCO
Frattura Ogni processo di rottura avviene in due stadi : la formazione e propagazione della cricca Sono possibili due modi di rottura: duttile e fragile.
Spettrofotometri Componenti principali: Sorgente di luce
CLASSIFICAZIONE E PROPRIETÀ DEI MATERIALI
Geometria dell’utensile
Sistemi fotovoltaici concentrati
2. La propagazione del calore
FISICA 2 Elementi di Elettromagnetismo quinta parte Prof. Renato Magli
Candidato: John Matteo Menei Relatore: prof. Marco Bernasconi
Speed of light Chiappella Davide 5BET Introduzione In questo testo multimediale si è cercato di ricreare uno schema semplificato di comunicazione attraverso.
INTERVENTI POSSIBLI PER IL RISPARMIO ENERGETICO IN ORDINE DECRESCENTE DI CONVENIENZA Sostituzione del generatore di calore Isolamento dei sottofinestra.
ECOGRAFIA Università degli Studi di Messina
Sensori di Pressione Integrati
Ingegneria per l’Ambiente e il Territorio
CHIMICA APPLICATA TECNOLOGIA DEI MATERIALI
H. h Radiazione elettromagnetica Le onde elettromagnetiche sono vibrazioni del campo elettrico e del campo magnetico; sono costituite da.
Consolidamento di edifici in muratura (a cura di Michele Vinci)
D.S. sett. 99 SENSORI MISURE ELETTRICHE 1 SENSORI ( parte II a ) Corsi di DIPLOMA UNIVERSITARIO corso integrato di AUDIOPROTESI III° MISURE ELETTRICHE.
Prova di recupero corso di Fisica 4 8/05/2006 I parte
Dispositivi optoelettronici (1)
Prova di esame del corso di Fisica 4 A.A. 2004/5 I appello di Settembre del 13/9/05 NOME………….....…. COGNOME…………… ……… ) Un raggio di.
PANNELLI SOLARI FOTOVOLTAICI Gallo Giuseppe IV A Elettronica.
LE ONDE.
1 Lezione XV-b Avviare la presentazione col tasto “Invio”
Tecnologie di produzione
LAVORO SVOLTO DA: FRANCESCA RUSSO
Conduzione Calore Irraggiamento Convezione.
Misure Meccaniche e Termiche - Università di Cassino18 Trasduttori potenziometrici I sensori potenziometrici sono generalmente utilizzati per ottenere.
1 Primi metodi di “misura” delle vibrazioni A causa dell’assenza di strumenti opportuni, le vibrazioni venivano “valutate” semplicemente toccando la macchina;
Proprietà dei liquidi. Processo Le proprietà dei materiali in fase liquida sono molto importanti per tutte le operazioni di trasformazione In molti casi,
Introduzione alla scienza dei materiali. Informazioni utili Ricevimento: giovedì ore (o previo appuntamento.
CND: Generalità Dipartimento di Ingegneria dei Materiali e della Produzione Università di Napoli “Federico II” Tecnologia dei materiali e sistemi di lavorazione.
FIBRE OTTICHE “DI PLASTICA” POF (Polymer Optical Fibre) Le plastiche adatte per fare le fibre sono quelle che non hanno idrogeno nella struttura e che.
FORMATURA A MANO (HAND LAY-UP)
Filament Winding Tradizionale
STRUTTURA DEI MATERIALI METALLICI
Sensori di Posizione.
Misure Meccaniche e Termiche - Università di Cassino Leggi fondamentali: perdite di carico Allo stesso modo nella misura della pressione di un fluido in.
Proprietà dei materiali
Transcript della presentazione:

SMART STRUCTURES: Tipologie, tecnologie ed applicazioni Milano - 12 dicembre 2007 SMART STRUCTURES: Tipologie, tecnologie ed applicazioni Paolo Bettini Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Forlì - 15 marzo 2007

Sviluppo di nuovi materiali e tecnologie Influenza dell’Industria Aeronautica Materiali compositi Nuove filosofie di progettazione (SAFELIFE, FAIL SAFE) Damage tolerance Ispezioni più frequenti Strutture più leggere ed efficienti STRUCTURAL WEIGHT Current technology COST Obbiettivi Sviluppo di nuovi materiali e tecnologie

Convertiplano Agusta BA 609 Largo impiego di composito in fibra di carbonio Materiali compositi COST STRUCTURAL WEIGHT Current technology Obbiettivi

Materiali compositi Boeing 787 Primo aereo civile con fusoliera in carbonio Materiali compositi

Materiali compositi Formula 1 Telaio e superfici aerodinamiche in carbonio Materiali compositi

Materiali ibridi (FML) GLARE su Airbus A380 Materiali ibridi (FML) Materiali compositi Pannelli di rivestimento fusoliera

Smorzamento vibrazioni Smart Structures SMART STRUCTURE Proprietà meccaniche + Composite Proprietà funzionali Host material Sensor Actuator Controllo di forma Smorzamento vibrazioni Health monitoring

ANALOGIA COL CORPO UMANO Attuatori Sensori Materiale ospite Sistema elaborazione dati Corpo umano Smart Structures Nervi Muscoli Proprietà meccaniche + Proprietà funzionali Cervello Controllo di forma Smorzamento vibrazioni Health monitoring Monitorare le grandezze interessate Elaborare le informazioni ricevute Reagire tramite un sistema di attuazione ANALOGIA COL CORPO UMANO

Come sono fatti, come funzionano? Sensori Attuatori Come sono fatti, come funzionano? Realizzati sfruttando le proprietà di alcuni materiali in grado di reagire a degli stimoli esterni variando alcune proprie caratteristiche Input, stimolo Output, risposta SMART MATERIALS

Accoppiamento meccanico-elettrico: sensore SENSORI SMART MATERIALS ATTUATORI Esempio: L’effetto piezoelettrico diretto Curie scoprì che il quarzo sottoposto ad uno stress meccanico esibisce una carica elettrica in superficie. Accoppiamento meccanico-elettrico: sensore F>0 Input (stress) Output (DV)

Accoppiamento elettro-meccanico: attuatore SENSORI SMART MATERIALS ATTUATORI Esempio: L’effetto piezoelettrico inverso Accoppiamento elettro-meccanico: attuatore Stimolo (DV) Risposta (e)

Esistono molteplici tipologie: classificazione SENSORI SMART MATERIALS ATTUATORI Esistono molteplici tipologie: classificazione Classificazione in base al principio di funzionamento Cambiamento di una o più proprietà Trasformazione di energia

Esistono molteplici tipologie: classificazione SENSORI ATTUATORI CLASSIFICAZIONE SMART MATERIALS Esistono molteplici tipologie: classificazione Classificazione in base al principio di funzionamento Cambiamento di una o più proprietà Trasformazione di energia

CLASSIFICAZIONE Cambiamento di una o più proprietà Trasformazione di energia Tipologia Input/stimolo Output/risposta Termocromici D temperatura Variazione colore Esempi: Termografia Vetri fotocromatici Termometri

SENSORI CLASSIFICAZIONE Cambiamento di una o più proprietà Trasformazione di energia Tipologia Input/stimolo Output/risposta Termocromici D temperatura Variazione colore Meccanocromici Deformazione Variazione colore Chemocromici D concentrazione ch. Variazione colore Fotocromici Radiazione (luce) Variazione colore Fibre ottiche Deformazione Variazione proprietà segnale ottico

SENSORI CLASSIFICAZIONE ATTUATORI Cambiamento di una o più proprietà Trasformazione di energia Tipologia Input/stimolo Output/risposta Elettro/Magneto reologici D Campo Elettrico/Magnetico Variazione viscosità Giunti anti-vibrazione Assorbitori - smorzatori Esempi:

CLASSIFICAZIONE ATTUATORI Cambiamento di una o più proprietà Trasformazione di energia Tipologia Input/stimolo Output/risposta Termo-luminescenti D temperatura Emissione luce Elettro-luminescenti D campo elettrico Chemo-luminescenti D concentrazione ch. Foto-luminescenti Radiazione (luce) Foto-voltaici Radiazione (luce) D Potenziale elettrico Leghe a memoria di forma D temperatura, D sforzo Deformazione

SENSORI CLASSIFICAZIONE ATTUATORI Cambiamento di una o più proprietà Trasformazione di energia Tipologia Input/stimolo Output/risposta Piezoelettrici Deformazione D Potenziale elettrico Piroelettrici D temperatura D Potenziale elettrico Termoelettrici D temperatura D Potenziale elettrico Magnetostrittivi Deformazione Campo magnetico Elettrostrittivi Deformazione D Potenziale elettrico

Smart Structures Perché inglobare sensori ed attuatori? Composite Host material Invasività sul materiale ospite Accuratezza delle misure dei trasduttori Autorità degli attuatori Sensor Actuator

Quali sono i sensori e gli attuatori adatti ad essere inglobati? Smart Structures SMART STRUCTURE Quali sono i sensori e gli attuatori adatti ad essere inglobati? Quali sono le problematiche tecnologiche connesse al loro inglobamento? Composite Host material Sensor Actuator

LA SCELTA INGLOBABILITA’ Smart Structures dipende da molti fattori: Morfologia Compatibilità con materiale ospite Invasività (passiva e attiva) Prestazioni (dipendenti da applicazione) INGLOBABILITA’

Grafite/Vetro/Kevlar LA SCELTA Smart Structures dipende da molti fattori: Sensori Scelta materiale ospite Grafite/Vetro/Kevlar + Resina epoxy (Tp 130÷180 C) PRE-PREG Fibre ottiche, Piezoelettrici Attuatori Leghe a memoria di forma, Piezoelettrici

Le Fibre Ottiche Funzionamento Diametro esterno 140÷250 micron Coating Core Cladding Diametro esterno 140÷250 micron Funzionamento Core e Cladding con indici di rifrazione diversi Waveguide per propagazione segnale luminoso Variazione delle caratteristiche segnale ottico Deformazione

Le Fibre Ottiche FBGS (Fibre Bragg Grating Sensor) Esistono più architetture ottiche: a modulazione di ampiezza a modulazione di fase a modulazione di frequenza FBGS (Fibre Bragg Grating Sensor) misure puntuali elevata accuratezza e precisione ottima risluzione e sensibilità (3-5me) multiplexing misure non risentono dei disturbi elettro-magnetici

FBGS (Fibre Bragg Grating Sensor) Cold-writting technique Lunghezza d’onda a riposo 1550 nm Dimensione reticolo 5 mm

FBGS (Fibre Bragg Grating Sensor) Variano passo reticolare e indice rifrazione Se reticolo si deforma Varia lunghezza d’onda luce riflessa

FBGS (Fibre Bragg Grating Sensor) Sorgente infrarossa a banda larga

I Piezoelettrici Si utilizzano ceramiche sinterizzate con struttura policristallina Piombo Zirconato-Titanato Piombo Titanato Piombo Zirconato Bario Titanato (PZT) Microdomìni Polarizzazione Materiale polarizzato Momenti di dipolo elettrico a risultante nulla E costante per tempo fissato Momenti di dipolo elettrico rimangono orientati grazie elevata costante dielettrica

I Piezoelettrici (PZT) Esistono più tipologie: Monolitici Fascio di fibre parallele Sfruttano effetto d31 Spessore 127 micron Sfruttano effetto d33 Flessibili

I Piezoelettrici (PZT) Fascio di fibre parallele

I Piezoelettrici (PZT) Elettrodi per effetto d31 Elettrodi per effetto d33

Le Leghe a Memoria di Forma Struttura cristallina AUSTENITE Fase genitrice: struttura cubica B2 a corpo centrato, stabile ad alte temperature MARTENSITE Fase prodotto: struttura monoclina B19’, stabile a basse temperature (α≠90°, β=γ=90°) TWINNED (martensite non orientata; 24 possibili orientazioni) DETWINNED (martensite orientata) FASE-R Fase intermedia: struttura romboedrica R, presente solo dopo determinati trattamenti termici (α,β,γ≠90°)

Le Leghe a Memoria di Forma Comportamento microscopico Trasformazione martensitica: sforzo e temperatura influenzano la trasformazione enucleazione e propagazione localizzata di microscopici piani di interfaccia tra le fasi (habit plane) => reversibile non diffusiva con movimento coordinato degli atomi => istantanea As AF Ms MF Isteresi: energia dissipata in un ciclo Temperature di trasformazione As temperatura di inizio austenite AF temperatura di fine austenite Ms temperatura di inizio martensite MF temperatura di fine martensite

Le Leghe a Memoria di Forma Comportamento macroscopico MEMORIA DI FORMA A 1 VIA Deformazione Riscaldamento Raffreddamento T < Mf T < Mf T > Af T < Mf

Le Leghe a Memoria di Forma Comportamento macroscopico MEMORIA DI FORMA A 2 VIA Raffreddamento Deformazione Riscaldamento Riscaldamento T < Mf T < Mf T > Af T < Mf

Le Leghe a Memoria di Forma Comportamento macroscopico SUPERELASTICITA’ Carico Scarico T > Af T > Af T > Af Esistono 2 tipologie inglobabili: Fili (diametro 0,01÷0,5 mm) Strisce (dimens. 0,1x2,5 mm)

ASPETTI TECNOLOGICI Smart Structures Preparazione sensori/attuatori all’inglobamento Sviluppo tecniche di inglobamento Capacità di trasferimento del carico Invasività Sviluppo strumenti di simulazione numerica per la progettazione Caratterizzazione per validazione tecnologia

Aspetti tecnologici (preparazione all’inglobamento) PZT necessità di averli delle dimensioni in pianta necessarie. TAGLIO ECHING SALDATURA

Aspetti tecnologici (preparazione all’inglobamento) PZT necessità di averli delle dimensioni in pianta necessarie. TAGLIO ECHING SALDATURA

Aspetti tecnologici (preparazione all’inglobamento) PZT necessità di averli delle dimensioni in pianta necessarie. TAGLIO ECHING SALDATURA

Aspetti tecnologici (preparazione all’inglobamento) NiTiNOL necessità cicli di allenamento per 1a via e 2a via OWSM Training Dare al materiale la forma desiderata; Trattamento termico (circa 450°C per 3 minuti) mantenendo i fili nella forma desiderata ma liberi di allungarsi/accorciarsi. Risultato: Per essere inglobati in un pannello piano I fili devono essere dritti prima dopo

Aspetti tecnologici (preparazione all’inglobamento) NiTiNOL necessità cicli di allenamento per 1a via e 2a via TWSM Training Scaldare (105°C) sopra Af per portare il materiale in fase austenite; Deformare (max 6%) per ottenere martensite indotta da sforzo; Raffreddare (25°C) sotto Mf vincolando I fili allo stato deformato; Scaldare per recuperare la forma originaria indeformata; Ripetere la sequenza almeno 10 volte.

Aspetti tecnologici (preparazione all’inglobamento) Dopo l’allenamento le temperature di trasformazione e le proprietà meccaniche possono essere cambiate Necessità di prove caratterizzazione Differential Scanning Calorimeter Analysis (ASTM F2004-03) per ottenere le temperature di trasformazione -12 -7 -2 3 8 20 40 60 80 100 120 140 T [°C] Flow [mW] (exo down) Heating Cooling AF AS MS MF OWSM AS=53°C AF=62°C TWSM MF=32°C MS=44°C

Aspetti tecnologici (preparazione all’inglobamento) Dopo l’allenamento le temperature di trasformazione e le proprietà meccaniche possono essere cambiate Necessità di prove caratterizzazione Prove statiche di trazione (ASTM E111-97) EA=61GPa EM=19GPa

Aspetti tecnologici (inglobamento FO) Laminato composito 1° Problema: bassa resistenza a sforzi di taglio Zona critica: uscita dal pannello resina fluida scorre per capillarità Fibra Resina polimerizza attorno alla fibra pressione elevata vincolo meccanico fibra resa fragile

Aspetti tecnologici (inglobamento FO) Soluzione: Tubetti in teflon (diametro interno 0,2mm) + Resina bi-componente

Aspetti tecnologici (inglobamento FO)

Aspetti tecnologici (inglobamento FO)

Aspetti tecnologici (inglobamento FO) Fibra ottica esce dal bordo del laminato Soluzione difficilmente praticabile nelle applicazioni Necessità di sviluppare una tecnica di inglobamento con Fibra Ottica che esce da faccia superiore/inferiore 2° Problema:

Aspetti tecnologici (inglobamento FO) Soluzione adottata: Stampo con tassello

Aspetti tecnologici (inglobamento FO) Soluzione adottata:

Aspetti tecnologici (inglobamento FO)

Ciò altera lo spettro del segnale Aspetti tecnologici (inglobamento FO) 3° Problema: Il non allineamento della FO con le fibre di rinforzo può deformare il sensore. Angle ply Ciò altera lo spettro del segnale

FO inglobata nella pelle a 0° Aspetti tecnologici (inglobamento FO) Soluzioni adottate: Cuscini Elastomerici FBGS GFRP tessuto 0,1mm Una pelle a 0° [0°] Quick-Pack Quick-Pack [±45°] FO inglobata tra 2 sottili pelli di tessuto polimerizzato a bassa pressione FO inglobata nella pelle a 0° NO deformazione

Aspetti tecnologici (inglobamento FO) 4° Problema: Per garantire la capacità di trasferimento del carico non devono esserci deformazioni del coating Standard FO ha coating in acrilico. Incompatibilità con i cicli di polimerizzazione Tg circa 86°C

Spessore inferiore coating Aspetti tecnologici (inglobamento FO) Soluzioni adottate: Quick-Pack FO con poly-imide coating Spessore inferiore coating Tg circa 187°C

Aspetti tecnologici (inglobamento PZT monolitiche) Problemi: Conduzione con materiale ospite in fibra di carbonio Presenza saldature e fili elettrici Locale aumento della temperatura Parziale depolarizzazione Picco di pressione localizzato Rottura della piastrina

Aspetti tecnologici (inglobamento PZT monolitiche) Soluzioni adottate: Quick-Pack in GFRP isola elettricamente Sottile film di adesivo conduttivo Saldatura esterna al PZT Polimerizzazione tra cuscini in gomma Cuscini in gomma Pressione uniforme PZT GFRP

Aspetti tecnologici (inglobamento PZT monolitiche) Soluzioni adottate: Quick-Pack in GFRP isola elettricamente Sottile film di adesivo conduttivo Saldatura esterna al PZT Polimerizzazione tra cuscini in gomma Cuscini in gomma Pressione uniforme PZT GFRP

Aspetti tecnologici (inglobamento PZT monolitiche)

Aspetti tecnologici (inglobamento PZT in fibre) Il limite dei PZT monolitici è la non inglobabilità in laminati curvi PZT in fibra (Micro Fibre Composite)

Aspetti tecnologici (inglobamento PZT in fibre) PZT in fibra (Micro Fibre Composite) Adattate tecniche sviluppate per PZT monolitici Attività in corso: Messa a punto tecniche inglobamento in pannelli a semplice curvatura

Post polimerizzazione Aspetti tecnologici (inglobamento NiTiNOL) Durante laminazione Post polimerizzazione Filo predeformato a trazione e tenuto in trazione durante polimerizzazione Mediante inglobamento di manicotti in gomma vulcanizzata Problema: Interfaccia debole Problema: Trasferimento carico mediante struttura esterna

Necessità attrezzatura dedicata Aspetti tecnologici (inglobamento NiTiNOL) Durante laminazione Filo predeformato a trazione e tenuto in trazione durante polimerizzazione Necessità attrezzatura dedicata - Morsetti x Pre-tensionare i fili - Cornice x finitura superficiale

Aspetti tecnologici (inglobamento NiTiNOL) Attualmente sviluppo Tecnica mista con terminali inglobati all’estemità del pannello

Interfaccia (sensori/attuatori – materiale ospite) Determinazione del massimo carico trasferibile senza degrado dell’interfaccia NiTiNOL Fibra ottica Pull out

Interfaccia (NiTiNOL – materiale ospite) Determinazione del massimo carico trasferibile senza degrado dell’interfaccia Curve forza-spostamento: cedimento progressivo (a) e subitaneo (b) dell’interfaccia Curva (a): rottura progressiva dell’interfaccia, seguita da uno sfilamento completo Curva (b): cedimento subitaneo dell’interfaccia, che precede un lento sfilamento

Interfaccia (NiTiNOL – materiale ospite) Sforzo di taglio all’interfaccia tISS o IFSS (Interfacial Shear Stress): Curva globale forza massima di cedimento interfacciale-lunghezza di inglobamento 2,5 MPa Curva finale sforzo medio di taglio di rottura all’interfaccia-lunghezza di inglobamento

Interfaccia (Fibre ottiche – materiale ospite) FO coating poly-imide FO coating acrilico 25 N tR=64MPa 4,3 N tR=11MPa Rottura subitanea Rottura subitanea

Applicazioni Mediante realizzazione dimostratori tecnologici Ruota di reazione Supporto

Applicazioni Smorzatore passivo esterno Supporto ruota reazione satellite HIPSEO Smorzatore passivo esterno Smorzatore attivi PZT inglobati nel supporto

Applicazioni Supporto ruota reazione satellite HIPSEO

Applicazioni Supporto ruota reazione satellite HIPSEO

Applicazioni Manipolatore flessibile per esperimento su EXPA della stazione spaziale internazionale

Prestazioni migliorano con controllo attivo Applicazioni Manipolatore flessibile per esperimento su EXPA della stazione spaziale internazionale Prestazioni migliorano con controllo attivo Sensori FBGS Attuatori PZT

Applicazioni Monitoraggio strutturale pale di elicottero

Applicazioni Monitoraggio strutturale pale di elicottero Sensori FBGS inglobati nel longherone e nel bordo d’uscita

Applicazioni Monitoraggio strutturale pale di elicottero

Monitoraggio ciclo produttivo Applicazioni Monitoraggio ciclo produttivo Monitoraggio provino bordo d’uscita pala Fase inglobamento Quick-Pack

Monitoraggio ciclo produttivo Applicazioni Monitoraggio ciclo produttivo Polimerizzazione Quick-Pack Incollaggio talloni

Monitoraggio ciclo produttivo Applicazioni Monitoraggio ciclo produttivo Possibilità di valutare stress residui Andamento deformazioni – fasi di lavorazione

Controllo di forma e attuazione mediante attuatori in NiTiNOL Applicazioni Controllo di forma e attuazione mediante attuatori in NiTiNOL In corso collaborazione FERRARI GS Controllo di forma paratie per apertura-chiusura prese di raffreddamento Attuatore per apertura portello carburante L’idea è quella di avere attuazione sfruttando le fonti di calore presenti sulla vettura

Controllo di forma e attuazione mediante attuatori in NiTiNOL Applicazioni Controllo di forma e attuazione mediante attuatori in NiTiNOL