La Teoria Cromosomica dell’Ereditarietà

Slides:



Advertisements
Presentazioni simili
Coesione dei sister cromatidi
Advertisements

9.9 Molte malattie ereditarie umane sono controllate da un singolo gene Alcuni esempi di malattie ereditarie umane: Tabella 9.9.
MEIOSI Quelli che seguono sono elementi di base per comprendere la meiosi. Per semplicità non viene preso in considerazione il fenomeno del crossing over.
1) Dominanza incompleta
Le leggi dell’ereditarietà
ANALISI MENDELIANA GENOTIPO: costituzione genetica di un individuo, sia riferito ad un singolo gene, sia all’insieme dei suoi geni. FENOTIPO: manifestazione.
La teoria cromosomica dell'ereditarietà mette in relazione il comportamento dei cromosomi con l'eredità dei caratteri secondo Mendel  Il meccanismo con.
1. Nelle cavie il pelo ruvido ( R ) è dominante sul pelo liscio ( r )
EREDITARIETA’ DEI CARATTERI
La determinazione e il differenziamento del sesso
MENDEL 07/01/10.
MONOIBRIDISMO Monoibridismo nei bovini . Comportamento ereditario del colore dei mantelli semplici nei bovini in F1 e F2.
Leggi di Mendel terminologia Prima legge Seconda legge
Ricerca gene daltonismo
1° legge di Mendel: Principio della Segregazione
La genetica studia: dei geni Il funzionamento
Principali difficoltà nello studio dei caratteri genetici nell’uomo
La genetica studia: Il funzionamento La trasmissione da una generazione allaltra La variazione dei geni I geni sono i fattori che determinano lereditarietà
LICEO SCIENTIFICO STATALE “LEONARDO da VINCI” di FIRENZE
LEGGI DI MENDEL.
Esercizio.
LA GENETICA CLASSICA.
L’ereditarietà Le regole della trasmissione ereditaria
UNIVERSITA’ DEGLI STUDI DI CASSINO FACOLTA’ DI SCIENZE MOTORIE
BIOLOGIA MOLECOLARE E DNA
L’albero genealogico è un albero di discendenza che descrive i rapporti, per un determinano carattere, esistenti tra genitori e figli nel corso delle generazioni.
Cap. 11 Base cromosomica dell’eredità pp
UNIVERSITA’ DEGLI STUDI DI CASSINO FACOLTA’ DI SCIENZE MOTORIE
Premere invio per procedere con la presentazione.
Genetica mendeliana e alberi genealogici
Teoria cromosomica dell'ereditarietà. Esperimenti di Morgan
OGNI PAIO DI CROMOSOMI CONTIENE GLI STESSI GENI NELLO STESSO ORDINE MA NON NECESSARIAMENTE IN FORMA IDENTICA. ALLELI: FORME DIVERSE DI UNO STESSO GENE.
Le origini della genetica
Le leggi dell’ereditarietà
Esperimenti di Mendel Mendel ha adottato come organismo modello la pianta di pisello odoroso Pisum sativum e ha concentrato la sua attenzione su caratteri.
Principali difficoltà nello studio dei caratteri genetici nell’uomo
LE MALATTIE EREDITARIE
La trasmissione dei caratteri ereditari
Genetica Mendeliana Presupposti
Mendel e le sue leggi.
Mendel e l’ereditarietà
La riproduzione è il processo mediante il quale gli esseri viventi generano nuovi individui della stessa specie. La riproduzione sessuale avviene mediante.
Le mutazioni Classe: IV Scuola: Liceo scientifico.
Genetica: Lo studio dell’eredità
Sc.Biosanitarie Genetica I
Determinazione del sesso in D. melanogaster
Gli studi di mendel A mano a mano che gli studi di genetica procedevano, divenne chiaro che le caratteristiche dominanti e recessive non sono sempre così.
Principali difficoltà nello studio dei caratteri genetici nell’uomo
LE LEGGI DI MENDEL.
LA GENETICA… …e le leggi di Mendel Prof.ssa Filomena Mafrica.
Scheda 4. TRASMISSIONE EREDITARIA: EREDITA’ LEGATA AL SESSO
TRASMISSIONE EREDITARIA NELL’UOMO DISCONOSCIMENTO PATERNITA’
37. La fase della mitosi nella quale i cromosomi si allineano lungo il piano equatoriale della cellula è detta a - Profase b - Metafase c - Anafase d.
Esercitazione di Genetica - 5
1. Un incrocio fra due piante, una a fiori blu scuro ed un altra a fiori bianchi produce una F1 tutta a fiori blu chiaro. Reincrociando la F1 si ottiene.
Laura e Michele (II-5 e II-6) si conoscono ad una lezione su una malattia metabolica ereditata come un carattere autosomico recessivo. Entrambi hanno.
UN SISTEMA SPERIMENTALE CONTROLLATO E FACILE DA MANIPOLARE GENETICAMENTE.
Bianca Maria Ciminelli Studio 319, lab 308 (settore H0) Tel Mail: Ricevimento.
Cromosomi, Geni e Mutazioni
La mancanza di pigmentazione nell’uomo (e non solo) è definita albinismo e dipende da un fattore ereditario recessivo “a”. Il dominante “A” è invece responsabile.
Femmine maschi tutti femmine ½ maschi ½ maschi Esperimenti di Morgan PF1F2PF1F2 X Morgan premio nobel per la fisiologia e la medicina nel 1933 per “le.
Esperimenti di Morgan Le basi cromosomiche dell’ereditarietà:
Transcript della presentazione:

La Teoria Cromosomica dell’Ereditarietà Nel 1902 Sutton e Boveri misero in relazione il parallelismo tra trasmissione dei cromosomi e i fattori Mendeliani. Nel 1905 Stevens, studiando le cavallette, scoprì che le femminine erano XX (numero pari di cromosomi) mentre i maschi X (numero dispari di cromosomi). L’uovo contiene sempre un cromosoma X mentre lo spermatozoo può averlo o esserne privo. Se lo spermatozoo contiene X la cellula uovo fecondata sarà XX (♀). Stevens trovò inoltre che nel verme della farina il maschio era XY e la femmina XX. Una situazione analoga sia ha nella Drosophila. omogametico eterogametico

Eredità Legata al Sesso Esperimenti di Thomas Morgan con D. melanogaster (1910). Per le sue scoperte sull’ereditarietà Morgan ricevette il Nobel nel 1933. Morgan trovò un moscerino maschio con gli occhi bianchi (w) invece del colore rosso del selvatico (w+). Da un incrocio ♂ w con una ♀ w+ otteneva: F1: tutti moscerini (sia ♀ che ♂) con occhi rossi. L’ allele w è recessivo rispetto a w+ F2: 3470 moscerini con occhi rossi 782 moscerini con occhi bianchi (~3:1). Tutti i moscerini con gli occhi bianchi erano maschi. Morgan propose che il gene w fosse localizzato su cromosoma X. Eredità legata al sesso. Da un incrocio reciproco ♀ w con una ♂ w+ otteneva: F1: ½ ♀ occhi rossi + ½ ♂ occhi bianchi. F2: numeri uguali di ♀ e ♂ con occhi rossi e bianchi.

Esperimenti di Morgan - Conclusioni Geni legati o associati al sesso. Il gene w è localizzato sul cromosoma X. I maschi possiedono un solo allele (singola copia del gene) e sono detti emizigoti. I maschi ricevono il loro cromosoma X dalla madre. Le femmine ricevono un cromosoma X dalla madre e l’altro cromosoma X dal padre. Se un carattere è legato al sesso incrocio ed incrocio reciproco danno rapporti differenti. La trasmissione di un allele da un maschio attraverso una figlia femmina ad un nipote maschio è detta eredità crisscross. Dimostrazione della teoria cromosomica dell’ereditarietà. Infatti l’ereditarietà del gene w segue in parallelo quella del cromosoma X. Il gene è X-linked.

No rapporto 3:1 - geni legati al sesso Problema: Si consideri l’incrocio ♀ linea pura con occhi vermiglio con ♂ linea pura occhi rossi (carattere dominante). La F1 presenta tutti i maschi con occhi vermiglio e tutte femmine con occhi rossi. Meccanismo delle ereditarietà ? P v+/Y x v/v gameti ½ v+ + ½ Y v F1 ½ v+/v (♀) + ½ v/Y(♂) Eredità Crisscross P v+ (♂) ↓ F1 v+ (♀) F2 v+ (♂) F2 Gameti ♂ ½ v + ½ Y Gameti (♀) ½ v ½ v+ ¼ v/v + ¼ v/Y ¼ v+/v + ¼ v+/Y Metà delle ♀ hanno gli occhi rossi e metà gli occhi vermiglio. Metà dei ♂ hanno gli occhi rossi e metà gli occhi vermiglio. No rapporto 3:1 - geni legati al sesso

Gameti ♂ ½ b+ + ½ Y Gameti (♀) ½ b ¼ b+/b + ¼ b/Y ½ b+ Problema: Si consideri l’incrocio b+/b a+/a ♀ x b+/Y a+/a ♂ 1) Si calcoli la frequenza di ottenere un maschio con genotipo b/Y a/a 2) Si calcoli la frequenza di ottenere una femmina con fenotipo b+/- a+/- Gameti ♂ ½ b+ + ½ Y Gameti (♀) ½ b ½ b+ ¼ b+/b + ¼ b/Y ¼ b+/b+ + ¼ b+/Y a+/a x a+/a → ¼ a+/a+ + 2/4 a+/a + ¼ a/a → freq. a/a = ¼ Freq. b/Y (♂) = ¼ Ris. ¼ x ¼ = 1/16 2) Freq. b+/- (♀) = 2/4 Freq. a+/- = ¾ Ris. 2/4 x ¾ = 6/16 = 3/8

Aa x Aa  ¾ A- Freq. ♀ ½ Ris.  ½ x ¾ = 3/8 Problema: Si considerino le due coppi alleliche Aa e w+/w di cui la seconda è portata sul cromosoma X. I caratteri A e w+ sono dominanti. Incrocio Aa w+/w (♀) x Aa w+/Y (♂) Si calcoli la frequenza del genotipo AA w/Y. Aa x Aa  ¼ AA w+ w w+ ¼ w+/w+ ¼ w+/w Y ¼ w+/Y ¼ w/Y ¼ w/Y Ris. 1/16 AA w/Y Si calcoli la frequenza di femmine con fenotipo A-. Aa x Aa  ¾ A- Freq. ♀ ½ Ris.  ½ x ¾ = 3/8

Non-disgiunzione del cromosoma X (esperimenti di Calvin Bridges) Bridges trovò che in rari casi (1/2000) l’incrocio femmina occhi bianchi (w/w) con un maschio con occhi rossi (w+/Y) dava stranamente una F1 composta da femmine con occhi bianchi e maschi con occhi rossi. Moscerini eccezionali della F1 uguali al generazione parentale (P). w/w x w+/Y Gameti ♂ ½ w+ + ½ Y Gameti (♀) w ½ w+/w + ½ w/Y F1 attesa Bridges ipotizzò la non-disgiunzione in meiosi del cromosoma X. Quando la non-disgiunzione avviene in individui con normale assetto cromosomico è detta primaria. Tale anomalia può verificarsi anche negli autosomi.

Non-disgiunzione del cromosoma X in Drosophila ♀ ♂ X0 è un maschio sterile mentre XXY è una femmina fertile. La progenie XXX e Y0 muore nelle fasi iniziali dello sviluppo. In Drosophila il cromosoma Y non determina il sesso.

Non-disgiunzione secondaria: Per verificare la sua ipotesi di non-disgiunzione, Bridges proseguì i suoi studi incrociando la ♀ eccezionale con occhi bianchi ottenuta nella F1 con un ♂ wt. Segregazione normale: era atteso che i cromosomi X della femmina XXY segregassero indipendentemente dando origine a gameti X e XY. Tale condizione si verificava nella maggior parte dei casi (a). Non-disgiunzione secondaria: Bridges otteneva inoltre, in piccola percentuale (~4%), una progenie maschile con occhi rossi ed una femminile ♀ ♂ La progenie XXX e YY muore con occhi bianchi (ancora F1 = P). Tale progenie non era il risultato di una normale segregazione cromosomica bensì si verificava una seconda non-disgiunzione del X nella femmina XXY con formazione di gameti XX e Y (b).

Determinazione del sesso Sistema XX-XO → cavallette ed alcuni insetti. Sistema XX-XY → nei mammiferi, in altri animali ed in alcune piante. In Drosophila (4 cromosomi, una coppia X/Y e 3 coppie autosomiche etichettate 2, 3, e 4) il sesso è determinato dal rapporto tra cromosomi X e corredi autosomici, X:A. Nella ♀ abbiamo XX e 2 set di autosomi, X:A = 1 Nel ♂ abbiamo X e 2 set di autosomi, X:A = 0,5 Un moscerino XXY ha X:A = 1 ed è quindi ♀ Un moscerino X0 ha X:A = 0,5 ed è quindi ♂ Sistema ZZ-ZW → negli uccelli, farfalle, falene e pesci. Il maschio è ZZ mentre la femmina è ZW ed è in emizigosi. I geni su Z si comportano come quelli sull’X. Identidicazione del sesso in una pianta (Atriplex garrettii) in assenza di fioritura mediante RAPD-PCR

Un gene Z-linked B determina il piumaggio striato. Il gene B è Z-linked e dominante. BB e Bb piumaggio striato, bb piumaggio non striato. (♀) (♂) (♀) (♂) Le femmine ricevono il loro cromosoma Z dal padre. I maschi ricevono un cromosoma Z dalla madre e l’altro cromosoma Z dal padre.

Teoria Cromosomica La modalità di segregazione dei geni segue il comportamento dei cromosomi in meiosi. I° legge di Mendel: segregazione indipendente dei due membri (alleli) di una coppi genica. A → a B → b II° legge di Mendel: assortimento indipendente di geni che controllano differenti caratteri. Aa → Bb

Anomalie numeriche dei cromosomi X e Y nell’uomo Una delle sindromi più studiata è quella di Turner (X0). Ha un incidenza di 1 su 10000 femmine ed il 99% degli embrioni muore prima della nascita. Individui affetti da questa patologia hanno statura bassa, organi sessuali interni immaturi e sono quindi spesso sterili. Un quadro clinico comparabile (aggravato da un basso QI) si ha nei maschi affetti dalla sindrome di Klinefelter. I cariotipi XYY (non-disgiunzione del Y) e XXX (triplo-X) non presentano invece gravi anomalie (problemi fertilità e QI inferiore alla media). Il cromosoma Y porta un gene importante denominato fattore di determinazione testicolare. Corpo di Barr in un nucleo interfasico di una cellula somatica femminile Il corpo di Barr è un cromosoma X fortemente condensato e quindi inattivo. Il cromosoma X che da origine al corpo di Barr è scelto a caso e può essere di derivazione materna o paterna e cambia da cellula somatica a cellula somatica. L’inattivazione del X (16° gg, embrione con 500-1000 cellule) è un esempio di fenomeno epigenetico: cambiamento dell’espressione genica ereditabile in assenza di un cambiamento del DNA.

Analisi degli alberi genealogici (pedigree) Studio di come un carattere viene ereditato nell’ambito di una famiglia. Probando è individuo affetto da cui si ricostruisce l’albero genealogico. Esempio: Il carattere compare in IV-2 e IV-4. Il carattere è recessivo. I genitori non presentano il carattere ma devono essere portatori Aa.

L'albinismo è una malattia dovuta alla totale o parziale mancanza di melanina nella pelle, nell’iride, nei peli e capelli.  I-1, II-6, II-7, III-3 e III-6 sono albini (aa) I-3 e I-4 sono Aa (F1: 2 ♀ aa) II-4 e II-5 sono Aa (F1: 1 ♀ aa e 1 ♂ aa) Se II-4 è Aa e I-1 è aa, I-2 deve essere Aa II-1, II-2, II-3 e II-4 rappresentano un salto di generazione Generalmente i genitori sono in eterozigosi (Aa) e quindi sani ? Il nanismo (acondroplasia) è determinato da una mutazione dominante nel gene FGFR3, gene del recettore 3 per il fattore di crescita Il fenotipo mutante è Aa (malato), il wt è aa mentre AA è letale L’incrocio è sicuramente Aa x aa Tutti i rossi sono Aa (malati) e tutti i celeste sono aa (sani) Il carattere non salta di generazione ed uno dei genitori deve essere affetto dalla patologia

L’emofilia, un carattere recessivo legato all’ X Albero genealogico della famiglia Reale Inglese. La mutazione è insorta nella Regina Vittoria. Molti più maschi che femmine manifestano la patologia (a/a e a/Y). La quasi totalità dei maschi non si sono riprodotti (eccezione Leopold Duke of Albany). Se la ♀ è portatrice → a+/a ♀ x a+/Y ♂ → ½ a+/Y (♂ sani) e ½ a/Y (♂ malati). Le femmine sono tutte sane ma metà di loro saranno portatrici del carattere. Se il ♂ è malato → a/Y ♂ x a+/a+ ♀ → a+/Y (♂ sani) e a+/a (♀ portatrici).

Eredità dominante legato all’ X gameti ♂ a Y ♀ a+ a+/a a+/Y a a/a a/Y a+ → smalto dei denti difettoso a/Y a+/a L’ eredità dominante legata all’X è abbastanza rara. Incrocio a+/a ♀ (malata) x a/Y ♂ (sano) → La madre malata (eterozigosi) trasmette la malattia a metà dei figli maschi e a metà delle figlie femmine. Un padre malato (a+/Y) trasmette il carattere solo alle figlie femmine (ad es. IV). Eredità dominante legato all’ Y L’ eredità legata all’Y è estremamente rara. Tutti maschi e nessuna femmina manifestano il carattere. Un esempio è l’orecchio peloso, la sua trasmissione non è del tutto nota.

Problema: Marito e moglie sono entrambi eterozigoti per il gene recessivo dell' albinismo: se hanno una coppia di gemelli dizigotici (fratelli), qual è la probabilità che entrambi i gemelli presentino il medesimo fenotipo (normale o albino) rispetto alla pigmentazione e che siano 2 maschi o 2 femmine ? Risoluzione: ll gene dell'albinismo (mancanza di melanina) è un tratto autosomico recessivo I genitori sono entrambi Aa, cioè portatori sani. Incrocio Aa x Aa  ¾ A- + ¼ aa Ad ogni concepimento abbiamo 50% (½) di probabilità che nasca una femmina ed il 50% (½) di probabilità che nasca un maschio. ½ x ½ = ¼ probabilità che siano entrambe femmine o entrambi maschi. Due figli/e normali = ¾ x ¼ = 3/16 Due figli/e albini = ¼ x ¼ = 1/16

Problema: Osservare l'albero genealogico proposto e dire quali meccanismi di trasmissione possono essere esclusi ? a) autosomico dominante b) autosomico recessivo c) legato al cromosoma X dominante d) legato al cromosoma X  recessivo e) legato al cromosoma Y

Una prima osservazione ci permette di escludere immediatamente l'eredità legata al cromosoma Y. Il tratto, infatti, sarebbe presente nei maschi ed in nessuna femmina. Escludiamo anche la trasmissione legata al cromosoma X di un tratto recessivo: una madre affetta (I-2) non genererebbe figli maschi sani (II-5). X Y X XX XY Si può escludere molto facilmente anche la trasmissione autosomica recessiva: genitori entrambi malati (II-1 e II-2) genereranno solo figli malati. a a a aa aa La trasmissione autosomica dominante non puo’ essere esclusa: partiamo dal presupposto più comune, ovvero che la persona malata sia eterozigote Aa. Omozigote dominante AA è una condizione estremamente rara. L'unione di una persona malata Aa e di una persona sana, genera sia figli sani sia figli malati. Situazione che si presenta nell'unione tra I-1 e I-2 ma anche tra II-6 e II-7.

A a a Aa aa Inoltre, due genitori malati (II-1 e II-2) possono generare figli sani, anche se con minore frequenza. A a A AA Aa a Aa aa E’ possibile la trasmissione legata al cromosoma X di un tratto dominante. X Y X XX XY X Y X XX XY X Y X XX XY La madre malata (I-2) trasmette la malattia a metà dei figli maschi e a metà delle figlie femmine. Due genitori malati (II-1 e II-2) possono generare solo figli maschi sani (50% dei figli maschi) ma nessuna figlia femmina sana. Il padre malato (II-6) trasmette la malattia solo alle figlie femmine.