A.S.E.11.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti.

Slides:



Advertisements
Presentazioni simili
Algebra Booleana Generalità
Advertisements

Algebra di Boole Casazza Andrea 3EA I.I.S. Maserati.
Elaborazione dei segnali mediante circuiti analogici o digitali.
Informatica Generale Marzia Buscemi IMT Lucca
Progettazione digitale 2/ed Franco Fummi, Maria Giovanna Sami, Cristina Silvano Copyright © 2007 – The McGraw-Hill Companies srl Progettazione Digitale.
Espressioni generali e MULTIPLEXER.
(sommario delle lezioni in fondo alla pagina)
Circuiti Combinatori Capitolo 3.
Cap. II. Funzioni Logiche
Algebra di Boole.
Esercitazioni su circuiti combinatori
Analisi e sintesi di circuiti combinatori
Sintesi con circuiti LSI-MSI
Autronica LEZIONE N° 15 Reti sequenziali, concetto di memoria, anelli di reazione Esempio, Flip-Flop R-S Tecniche di descrizione Grafo orientato Diagramma.
A.S.E.9.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 9 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti.
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Esempio di minimizzazioneEsempio di minimizzazione Considerazioni su soluzioni diverseConsiderazioni.
A.S.E.25.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 25 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse –Macchina.
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Teorema di SHENNONTeorema di SHENNON Implicanti, Inclusivi, Implicanti PrincipaliImplicanti,
ARCHITETTURA DEI SISTEMI ELETTRONICI
IFTS2002 Acq. Dati Remoti: INFORMATICA
Reti Combinatorie: sintesi
Sintesi con circuiti LSI-MSI. Realizzazione di reti combinatorie mediante Multiplexers Un multiplexer (MPX ) é una rete combinatoria con N ingressi, una.
L'algebra di Boole e le sue applicazioni
Algebra di George Boole
Indice: L’algebra di Boole Applicazione dell’algebra di Boole
Analisi e sintesi di circuiti combinatori. Reti combinatorie.
Reti Logiche Reti Logiche Corso di Architetture degli Elaboratori.
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
Prima e Seconda Forma Canonica
Claudia Raibulet Algebra Booleana Claudia Raibulet
Una rete sequenziale asincrona è dotata di due
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
3/29/2017 Minimizzazione.
ELETTRONICA GEORGE BOOLE FUNZIONI LOGICHE Lezione N° 1
FONDAMENTI DI INFORMATICA
Algebra di Boole.
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
Università degli studi di Parma Dipartimento di Ingegneria dell’Informazione Politecnico di Milano © 2001/02 - William Fornaciari Reti Logiche A Lezione.
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Reti sequenzialiReti sequenziali BistabileBistabile Flip - Flop S – RFlip - Flop S – R 11.1A.S.E.
University of Padova Information Engineering Dept. – Microelectronics Lab. Corso di Laurea in Ingegneria dell’Informazione Elettronica Digitale - Lezione.
Corso di Laurea in Ingegneria dell’Informazione
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 8 Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti.
Algebra di Boole.
Circuiti di memorizzazione elementari: i Flip Flop
ARCHITETTURA DEI SISTEMI ELETTRONICI
Rappresentazione dell'informazione
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni,
A.S.E.14.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 14 Alcune definizioniAlcune definizioni Algoritmo di sintesi ottima di Quine-McCluskeyAlgoritmo.
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Mappe di KarnaughMappe di Karnaugh Sintesi ottimaSintesi ottima Esempio di minimizzazioneEsempio.
A.S.E.24.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 24 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse –Macchina.
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
A.S.E.18.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 18 Reti sequenzialiReti sequenziali –concetto di memoria –anelli di reazione EsempioEsempio.
A.S.E.10.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 10 Mappe di KarnaughMappe di Karnaugh ImplicantiImplicanti Implicanti principaliImplicanti principali.
Autronica LEZIONE N° 14 ALGEBRA BOOLEANA Postulati
Rappresentazione in virgola mobile (floating-point) Permette di rappresentare numeri con ordini di grandezza molto differenti utilizzando per la rappresentazione.
Architettura degli Elaboratori 1
A.S.E.9.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 9 Algebra BOOLEANA a due valori Sistema matematico formaleSistema matematico formale Elementi,
Rappresentazione dell'informazione 1 Se ho una rappresentazione in virgola fissa (es. su segno e 8 cifre con 3 cifre alla destra della virgola) rappresento.
Sintesi Reti Combinatorie
Algebra di Boole.
A.S.E.16.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 16 Porte Tri StatePorte Tri State Reti sequenzialiReti sequenziali –concetto di memoria –anelli.
NANDNOR A BA NAND B falso vero falso vero vero vero falso vero falso A BA NOR B falso vero falso vero falso vero falso falso vero falso
L’algebra della logica delle proposizioni
Calcolatori Elettronici
Reti Logiche A Lezione 2.1 Sintesi di reti combinatorie a due livelli
La tabella delle verità è un modo per rappresentare il comportamento di una funzione combinatoria La tabella delle verità ha due tipi di colonne: colonne.
Esercizio n o 3 Si realizzi una calcolatrice a 32 bit con interfaccia “normale” (decimale) con LabView, utilizzando SOLAMENTE: –convertitore decimale (input)
I GRAFICI – INPUT 1.
Introduzione a Logisim
Transcript della presentazione:

A.S.E.11.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti logiche combinatorie Reti logiche sequenzialiReti logiche sequenziali SimboliSimboli Concetto di cicloConcetto di ciclo Concetto di minimizzazione (funzione costo)Concetto di minimizzazione (funzione costo) Realizzazioni diverse della stessa funzioneRealizzazioni diverse della stessa funzione Mappe di KarnaughMappe di Karnaugh ImplicantiImplicanti Implicanti principaliImplicanti principali

A.S.E.11.2 Richiami Esempi di applicazione dei vari teoremiEsempi di applicazione dei vari teoremi Passaggi da forma SP a PS e viceversaPassaggi da forma SP a PS e viceversa Insieme funzionalmente completoInsieme funzionalmente completo Funzione NANDFunzione NAND Funzione NORFunzione NOR Funzioni AND, OR e NOTFunzioni AND, OR e NOT Funzioni NAND e NORFunzioni NAND e NOR

A.S.E.11.3 Funzioni “complesse” 1 L’operatore “XOR”, OR ESCLUSIVO è:L’operatore “XOR”, OR ESCLUSIVO è: DefinizioneDefinizionexyu

A.S.E.11.4 Funzioni “complesse” 2 L’operatore “XNOR”, NOR ESCLUSIVO è:L’operatore “XNOR”, NOR ESCLUSIVO è: DefinizioneDefinizionexyu

A.S.E.11.5 Enumerazione di funzioni 1 Quesito:Quesito: Quante funzioni di due variabili si posso realizzare?Quante funzioni di due variabili si posso realizzare? Risposta:Risposta: quante sono le possibili configurazioni diverse di quattro elementi binari (cioè 16). In generale:quante sono le possibili configurazioni diverse di quattro elementi binari (cioè 16). In generale:xy f0f0f0f0 f1f1f1f1 f2f2f2f2 f3f3f3f3 f4f4f4f4 f5f5f5f5 f6f6f6f6 f7f7f7f7 f8f8f8f8 f9f9f9f9 fAfAfAfA fBfBfBfB fCfCfCfC fDfDfDfD fEfEfEfE fFfFfFfF

A.S.E.11.6 Enumerazione di funzioni 2 Ruotando di 90˚ la tabellaRuotando di 90˚ la tabella

A.S.E.11.7 Reti Logiche Sistema elettronico che ha in ingresso segnali digitali e fornisce in uscita segnali digitali secondo leggi descrivibili con l’algebra BooleanaSistema elettronico che ha in ingresso segnali digitali e fornisce in uscita segnali digitali secondo leggi descrivibili con l’algebra Booleana R.L. è unidirezionaleR.L. è unidirezionale R. L.   a b nw y x

A.S.E.11.8 Tipi di reti Reti COMBINATORIEReti COMBINATORIE In qualunque istante le uscite sono funzione del valore che gli ingressi hanno in quell’istanteIn qualunque istante le uscite sono funzione del valore che gli ingressi hanno in quell’istante Il comportamento (uscite in funzione degli ingressi) è descritto da una tabellaIl comportamento (uscite in funzione degli ingressi) è descritto da una tabella Reti SEQUENZIALIReti SEQUENZIALI In un determinato istante le uscite sono funzione del valore che gli ingressi hanno in quell’istante e i valori che hanno assunto precedentementeIn un determinato istante le uscite sono funzione del valore che gli ingressi hanno in quell’istante e i valori che hanno assunto precedentemente La descrizione è più complessaLa descrizione è più complessa Stati InterniStati Interni Reti dotate di MEMORIAReti dotate di MEMORIA

A.S.E.11.9 Simboli Simboli Rete Logica =>scomponibile in blocchiRete Logica =>scomponibile in blocchi Blocchi base = simboli degli operatori elementariBlocchi base = simboli degli operatori elementari Rappresentazione delle funzioni logiche mediante schemiRappresentazione delle funzioni logiche mediante schemi RAPPRESENTAZIONE SCHEMATICARAPPRESENTAZIONE SCHEMATICA

A.S.E Porte logiche Rappresentazione circuitale delle funzioni logicheRappresentazione circuitale delle funzioni logiche –AND –OR –NOT X1X1 X2X2 X3X3 Y X1X1 X2X2 Y XY

A.S.E Esempio Schema simbolico della funzioneSchema simbolico della funzione –RETE LOGICA RETELOGICARETELOGICA X1X1 XnXn X2X2 U = f(X 1, X 2,…., X n ) X2X2 X1X1 X3X3 U

A.S.E Altre porte logiche NANDNAND NORNOR X Z Y X Z Y XZY XZY

A.S.E Proprietà della porta NAND (NOR) Utilizzando solamente porte NAND (NOR) è possibile realizzare qualunque rete logicaUtilizzando solamente porte NAND (NOR) è possibile realizzare qualunque rete logica NOTNOT ANDAND OROR X Y = X X Z Y = XZ X Z Y = X+Z

A.S.E OR Esclusivo Realizzazione dell’OR EsclusivoRealizzazione dell’OR Esclusivo X Y X Y U XYU U

A.S.E Ciclo DefinizioneDefinizione Ciclo: Percorso chiuso che attraversa k blocchi (k ≥ 1) tutti nella loro direzione di funzionamentoCiclo: Percorso chiuso che attraversa k blocchi (k ≥ 1) tutti nella loro direzione di funzionamento OsservazioniOsservazioni Tutte le reti viste sono prive di cicliTutte le reti viste sono prive di cicli I blocchi base combinatori sono privi di cicliI blocchi base combinatori sono privi di cicli Le funzioni descrivibili dalle tabelle di verità sono tutte prive di cicli (le uscite sono funzione dei solo ingressi)Le funzioni descrivibili dalle tabelle di verità sono tutte prive di cicli (le uscite sono funzione dei solo ingressi) ConclusioneConclusione Tutte le reti logiche composte di blocchi combinatori e prive di cicli sono rei combinatorieTutte le reti logiche composte di blocchi combinatori e prive di cicli sono rei combinatorie

A.S.E Sintesi di reti combinatorie SintesiSintesi data la descrizione ai terminali di una rete combinatoriadata la descrizione ai terminali di una rete combinatoria ottenere la struttura in blocchi logici e le relative interconnessioniottenere la struttura in blocchi logici e le relative interconnessioni OsservazioniOsservazioni il funzionamento della rete deve essere possibile descriverlo mediante una tabella di veritàil funzionamento della rete deve essere possibile descriverlo mediante una tabella di verità non esiste una sola realizzazionenon esiste una sola realizzazione per poter scegliere fra le varie soluzioni è necessario definire il parametro da ottimizzareper poter scegliere fra le varie soluzioni è necessario definire il parametro da ottimizzare Funzione COSTOFunzione COSTO (numero di blocchi base, ritardo ingresso uscita, uso di particolari blocchi, ……..)(numero di blocchi base, ritardo ingresso uscita, uso di particolari blocchi, ……..) VEDERE ESEMPI SUCCESSIVIVEDERE ESEMPI SUCCESSIVI

A.S.E Esempio di funzione Data la funzione definita dalla Tabella di Verità:Data la funzione definita dalla Tabella di Verità: abcz Si ha:

A.S.E Schemi relativi 1 a b c z a a b b c c

A.S.E Schemi relativi 2 a b c z

A.S.E Schemi relativi 3 a b c z

A.S.E Schemi relativi 4 a b c z a b c z

A.S.E Mappe di Karnaugh 1 Tecnica tabellare di descrizione delle reti combinatorieTecnica tabellare di descrizione delle reti combinatorie Struttura a matriceStruttura a matrice EsempiEsempi 2 variabili3 variabili 2 variabili3 variabili si riportano solo gli “0” o solo gli “1”si riportano solo gli “0” o solo gli “1” 01 0f(0,0)f(0,1) 1f(1,0)f(1,1) b a f(0,0,0)f(0,0,1)f(0,1,1)f(0,1,0) 1f(1,0,0)f(1,0,1)f(1,1,1)f(1,1,0) b, c a

A.S.E Adiacenza Una combinazione delle variabili d’ingresso è detta logicamente adiacente a un’altra se le due combinazioni sono differenti solo in corrispondenza di un solo bitUna combinazione delle variabili d’ingresso è detta logicamente adiacente a un’altra se le due combinazioni sono differenti solo in corrispondenza di un solo bit Nelle mappe, l’ordine delle combinazioni delle variabili è scelto in modo tale che due combinazione geometricamente adiacenti siano anche logicamente adiacenteNelle mappe, l’ordine delle combinazioni delle variabili è scelto in modo tale che due combinazione geometricamente adiacenti siano anche logicamente adiacente

A.S.E Mappe di Karnaugh 2 4 variabili4 variabili due colonne adiacenti differiscono per una sola variabiledue colonne adiacenti differiscono per una sola variabile due righe adiacenti differiscono per una sola variabiledue righe adiacenti differiscono per una sola variabile la prima i l’ultima colonna sono adiacentila prima i l’ultima colonna sono adiacenti La mappa è scritta su un cilindro verticaleLa mappa è scritta su un cilindro verticale la prima i l’ultima riga sono adiacentila prima i l’ultima riga sono adiacenti La mappa è scritta su un cilindro orizzontale (ovvero la mappa sta su un toroide)La mappa è scritta su un cilindro orizzontale (ovvero la mappa sta su un toroide) c d a b f(0000)f(0001)f(0011)f(0010) 01f(0100)f(0101)f(0111)f(0110) 11f(1100)f(1101)f(1111)f(1110) 10f(1000)f(1001)f(1011)f(1010)

A.S.E Mappe di Karnaugh 3 5 variabili5 variabili e = 0e = 1 e = 0e = 1 Le caselle con la stessa lettera sono adiacentiLe caselle con la stessa lettera sono adiacenti Attenzione alle caselle con lettere in rosso SONO ADIACENTiAttenzione alle caselle con lettere in rosso SONO ADIACENTi c d a b az 01 a x 11y 10bb c d a b c z ce 01 d x 11dy 10e

A.S.E Esempio Per la funzione prima trovata si haPer la funzione prima trovata si ha abcz a b, c a

A.S.E Osservazioni Data una funzione di “n” variabiliData una funzione di “n” variabili Ogni casella della mappa corrisponde a un mintermine della funzione (prodotto di “n” termini)Ogni casella della mappa corrisponde a un mintermine della funzione (prodotto di “n” termini) Due caselle adiacenti danno luogo a un prodotto di (n-1) terminiDue caselle adiacenti danno luogo a un prodotto di (n-1) termini Quattro caselle adiacenti danno luogo a un prodotto di (n-2) terminiQuattro caselle adiacenti danno luogo a un prodotto di (n-2) termini Otto caselle adiacenti danno luogo a un prodotto di (n-3) terminiOtto caselle adiacenti danno luogo a un prodotto di (n-3) termini

A.S.E Esempio 1 Funzione “f ”di 4 variabiliFunzione “f ”di 4 variabili La forma canonica SP si ottiene sommando le caselle dove f vale “1”La forma canonica SP si ottiene sommando le caselle dove f vale “1”

A.S.E Esempio 2 Data la funzione definita dalla seguente mappa:Data la funzione definita dalla seguente mappa: si ha:si ha:

A.S.E Definizione Il prodotto “p ” si definisce implicante della finzione “f “ se p e f valgono “1” per la stessa configurazione degli ingressiIl prodotto “p ” si definisce implicante della finzione “f “ se p e f valgono “1” per la stessa configurazione degli ingressi I mintermini della funzione sono tutti implicanti della funzioneI mintermini della funzione sono tutti implicanti della funzione Una funzione si può sempre scrivere come somma di implicantiUna funzione si può sempre scrivere come somma di implicanti Una casella delle mappe di Karnaugh è un implicante di ordine 1 (0) [1]Una casella delle mappe di Karnaugh è un implicante di ordine 1 (0) [1] Due caselle adiacenti sono un implicante di ordine 2 (1) [2]Due caselle adiacenti sono un implicante di ordine 2 (1) [2] Quattro caselle adiacenti sono un implicante di ordine 3 (2) [4]Quattro caselle adiacenti sono un implicante di ordine 3 (2) [4] Otto caselle adiacenti sono un implicante di ordine 4 (3) [8]Otto caselle adiacenti sono un implicante di ordine 4 (3) [8] L’espressine di un implicante si ricava direttamente dalle mappe di KarnaughL’espressine di un implicante si ricava direttamente dalle mappe di Karnaugh

A.S.E Esempio Per la funzione prima vista si ha:Per la funzione prima vista si ha: Impicante di “z “ Impicante di ordine 2 Impicante di ordine 3 Impicante di ordine 1

A.S.E Esempio Esempio di implicanti di ordine 2Esempio di implicanti di ordine 2

A.S.E Esempio Esempio di implicanti di ordine 3Esempio di implicanti di ordine 3

A.S.E Esempio Esempio di implicanti di ordine 4Esempio di implicanti di ordine 4

A.S.E Definizione RichiamoRichiamo –Una funzione si può sempre scrivere come somma di implicanti Un implicante p* si dice implicante principale se non esiste nessun altro implicante p’ tale che p’ copra p*Un implicante p* si dice implicante principale se non esiste nessun altro implicante p’ tale che p’ copra p* Per ogni funzione f esiste almeno un insieme di implicanti principali tale che f può essere espressa come somma di soli implicanti principaliPer ogni funzione f esiste almeno un insieme di implicanti principali tale che f può essere espressa come somma di soli implicanti principali

A.S.E Esempio Per la funzione prima vista :Per la funzione prima vista : si ha:si ha: L’implicane verde non è principaleL’implicane verde non è principale

A.S.E Conclusioni Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti logiche combinatorie Reti logiche sequenzialiReti logiche sequenziali SimboliSimboli EsempiEsempi Concetto di cicloConcetto di ciclo Realizzazioni diverse della stessa funzioneRealizzazioni diverse della stessa funzione Mappe di KarnaughMappe di Karnaugh ImplicantiImplicanti Implicanti principaliImplicanti principali

A.S.E Quesiti Ricavare le funzioni logiche di Z 1 e Z 2Ricavare le funzioni logiche di Z 1 e Z 2 X2X2 X1X1 X3X3 Z1Z1 Z2Z2

A.S.E Suggerimenti Scrivere la tabella di verità comprensiva delle funzioni intermedie “a”, “b” e “c”Scrivere la tabella di verità comprensiva delle funzioni intermedie “a”, “b” e “c” X2X2 X1X1 X3X3 Z1Z1 Z2Z2 a c b