Spiegazione di alcuni concetti

Slides:



Advertisements
Presentazioni simili
Dr. Marta Giorgetti Esercizi Calcolo combinatorio, spazio degli eventi, probabilità, indipendenza, teorema di Bayes.
Advertisements

Elementi di calcolo delle probabilità
La probabilità nei giochi
La Matematica tra Gioco e Realtà
Definizione di probabilità, calcolo combinatorio,
Variabili aleatorie discrete e continue
La probabilità.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Corsi Abilitanti Speciali Classe 59A III semestre - 3
5) IL CAMPIONE CASUALE SEMPLICE CON RIPETIZIONE
Bruno Mario Cesana Stefano Calza
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni di probabilità
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Metodi Probabilistici, Statistici e Processi Stocastici Università Carlo Cattaneo Emanuele Borgonovo Metodi Probailistici, Statistici e Processi Stocastici.
Calcolo delle Probabilità
Torna alla prima pagina Sergio Console Calcolo Combinatorio e cenni di calcolo delle Probabilità Istituzioni di Matematiche Scienze Naturali.
Esempio Ritorniamo al caso illustrato con i diagrammi di Venn e
verificarsi di un evento probabilità di vincere
Corso di biomatematica Lezione 2: Probabilità e distribuzioni di probabilità Davide Grandi.
STATISTICA a.a DISTRIBUZIONE BINOMIALE (cenni)
LA PROBABILITA’.
Corso di Probabilità e Inferenza 1
Impostazione Assiomatica del Calcolo della Probabilità
DEFINIZIONE CLASSICA DI PROBABILITA’
Esercitazione di Matematica
REGOLE DEL CALCOLO DELLE PROBABILITA’
Logica Matematica Seconda lezione.
Orientamento universitario
La probabilità Schema classico.
Carte casuali.
Calcolo delle Probabilità
Teorie e Tecniche di Psicometria
1.PROBABILITÀ A. Federico ENEA; Fondazione Ugo Bordoni Scuola estiva di fonetica forense Soriano al Cimino 17 – 21 settembre 2007.
Lancio dadi Analisi probabilità esito somme varie.
LA PROBABILITA’ La probabilità nella concezione classica
Probabilità probabilità Probabilità totale
Esercizi con soluzione
Probabilità ed eventi casuali (Prof. Daniele Baldissin)
Torna alla prima pagina Sergio Console Calcolo delle Probabilità seconda parte Istituzioni di Matematiche Scienze Naturali.
PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
è … lo studio delle caratteristiche di regolarità dei fenomeni casuali
Rischio e Probabilità. Probabilità di un Evento P(E)  P(E)=1 o 100% => evento certo;  P(E) molto piccolo => evento improbabile;  P(E)=0 o 0% => evento.
Calcolo combinatorio e probabilità
PROBABILITA’ Scienza che studia i fenomeni retti dal caso EVENTO (E): avvenimento che può accadere oppure no 1.certo: se si verifica sempre (es. nel lancio.
INTRODUZIONE ALLA TEORIA DELLA PROBABILITÀ. INTRODUZIONE ALLA TEORIA DELLA PROBABILITÀ.
Probabilità e Variabili Casuali
Daniela Valenti, Treccani Scuola
Evento: “Fatto o avvenimento che già si è verificato o che può verificarsi ….” Gli eventi di cui ci occuperemo saranno soltanto gli eventi casuali, il.
La probabilità condizionata
2) PROBABILITA’ La quantificazione della ‘possibilità’ del verificarsi di un evento casuale E è detta probabilità P(E) Definizione classica: P(E) è il.
PROBABILITÀ Corsi Abilitanti Speciali Classe 59A III semestre - 2.
Probabilità e Genetica
ELEMENTI DI CALCOLO DELLE PROBABILITA’
Probabilità Esercitazioni numeriche del corso di GENETICA AA 2010/2011 LEZIONE N°1.
RACCONTARE LA MATEMATICA
LA PROBABILITA’.
16) STATISTICA pag.22. Frequenze frequenza assoluta (o frequenza): numero che esprime quante volte un certo valore compare in una rilevazione statistica.
La probabilità matematica
METODI E TECNOLOGIE PER L’INSEGNAMENTO DELLA MATEMATICA Lezione n°17.
LA PROBABILITA’. CHE COS’E’? La probabilità di un evento è il quoziente tra il numero dei casi favorevoli a quell’evento e quello dei casi possibili quando.
ELEMENTI DI CALCOLO DELLE PROBABILITA’. Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Probabilità Definizione di probabilità La definizione di probabilità si basa sul concetto di evento, ovvero sul fatto che un determinato esperimento può.
Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento.
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Spiegazione di alcuni concetti
LA LA PROBABILITA'.
Transcript della presentazione:

Spiegazione di alcuni concetti La probabilità Spiegazione di alcuni concetti

Alcune definizioni In probabilità abbiamo a che fare con eventi, ovvero accadimenti che possono avvenire oppure no, a caso. Si indicano con E; sono eventi diversi E1 ed E2 Un evento è descritto da un enunciato, che può essere vero o falso. “È uscita la pallina rossa alla roulette” “È uscito il 3 nel lancio di un dato” Gli eventi possono essere composti, così come gli enunciati. “È uscito il 3 oppure il 5 nel lancio di un dato”, dove i due enunciati che descrivono i due eventi sono: E1 = “è uscito il 3…”; E2 = “è uscito il 5…”. Due eventi possono essere tra loro incompatibili quando l’accadere dell’uno esclude l’accadere dell’altro; altrimenti sono compatibili. L’evento che esca alla roulette un numero pari è incompatibile con l’evento che esca un numero dispari (ovviamente nello stesso lancio). Al totocalcio che risulti 1 è incompatibile coll’evento che risulti anche X (oppure 2) Alle carte il fatto che esca il 7 è compatibile col fatto che esca un seme di colore rosso. Due eventi sono indipendenti quando il verificarsi dell’uno non influenza il verificarsi dell’altro. In caso contrario sono dipendenti. Alla roulette i due eventi E1 = “è uscito un numero rosso” ed E2 = “è uscito un numero pari” sono indipendenti, in quanto l’accadere dell’uno o dell’altro non influenza in nulla l’accadere dell’altro.

Alcuni importanti teoremi Probabilità contraria: la somma delle probabilità di un evento E e del suo contrario E è eguale a 1. Se la probabilità che esca un 3 a dadi è di 1/6, allora la probabilità che escano i rimanenti numeri è di 5/6. Per cui si ha che Probabilità totale di eventi incompatibili: la probabilità di due o più eventi incompatibili è data dalla somma delle probabilità dei singoli eventi. Ovvero, in formule: p(E1E2) = p(E1) + p(E2) Probabilità totale di eventi compatibili: la probabilità di due o più eventi compatibili è data dalla somma delle probabilità dei singoli eventi meno la probabilità dell’evento intersezione. In formule: p(E1E2) = p(E1) + p(E2) - p(E1E2)

Probabilità condizionata Si ha la probabilità condizionata quando la probabilità che accada un certo evento E1 è condizionata dal fatto che avvenga un altro evento E2, il che si scrive: p(E1/E2). Ad esempio vogliamo sapere la probabilità che al lancio di due dadi esca la somma di 6 quando su uno dei due dadi esce il numero 2. In questo caso la probabilità di ottenere 6 è condizionata dal fatto che uno dei due dadi dia un due. Per cui si hanno solo due casi: Primo dado 2, secondo dado 4 Primo dado 4, secondo dado 2 La formula che permette di calcolare la probabilità condizionata è la seguente: Ritornando all’esempio di prima, sia E1 l’evento “la somma sulle due facce è 6” ed E2 l’evento “uscita della faccia con numero 2”. Abbiamo così: - la p(E2), cioè che esca almeno un due lanciando i due dadi, è data (per un semplice calcolo combinatorio) da 11/36; - la p(E1  E2), cioè la possibilità che esca una coppia con almeno un numero 2 e che dia per somma il numero 6, è data da 2/36. Per cui, applicando la formula si avrà:

Probabilità composta Dalla formula della probabilità condizionata si ricava la probabilità composta, ovvero la probabilità che due eventi accadano insieme, cioè la probabilità di p(E1E2) Questa si chiama probabilità composta ed è data dalla formula: p(E1E2) = p(E2)  p(E1/E2) (eventi compatibili) p(E1E2) = p(E1)  p(E2) (eventi incompatibili)

Teorema di Bayes Il teorema (o formula) di Bayes nasce da un quesito: se si è verificato l’evento E1, qual è la probabilità che il suo accadere sia stato causato da un altro evento E2? Detto in altri termini, voglio sapere quale sia la probabilità che un certo evento sia stata la causa C di un altro evento E che si è verificato, ovvero voglio conoscere la probabilità di C per l’evento E. Il che si scrive: p(C/E) Il teorema dice che: Nel caso in cui le cause fossero più di una (mettiamo C1, C2 e C3), allora la probabilità che a causare E sia stata ad esempio la causa C2 è data dalla formula più generale:

Un esempio del teorema di Bayes Tenendo presente le formule prima date, facciamo un esempio. Abbiamo due scatole; in quella A ci sono 30 biglie rosse e 15 nere; nella B ci sono 20 biglie rosse e 30 nere. Mi viene consegnata una biglia rossa senza che mi sia detto da quale scatola essa è stata estratta. Io mi domando allora: che probabilità v’è che essa sia stata estratta dalla scatola A? Ovvero, che la causa dell’evento E = “biglia rossa” sia la “scatola A”? I dati sono i seguenti: • Visto che le scatole hanno la stessa probabilità di essere quelle da cui è stata estratta la biglia rossa, allora avremo che: p(CA) = p(CB) = 1/2. • La probabilità che la biglia rossa sia stata estratta dalla scatola A è data da: p(E/CA) = 30/45 = 2/3 • La probabilità che la biglia rossa sia stata estratta dalla scatola B è data da: p(E/CB) = 20/50 = 2/5 Ora possiamo applicare la formula di Bayes e avremo: Ed effettuando le opportune sostituzioni:

Come si calcola tale probabilità? Il valore così trovato non è altro che l’applicazione di quella che si definisce la “probabilità classica”, che è data dal numero dei casi favorevoli su quelli possibili. Ad esempio, nel caso del lancio dei dati la probabilità che esca il 6 è di 1/6, in quanto è un caso favorevole su sei possibili: Dove m indica i casi favorevoli e n quelli possibili. Nel caso delle biglie della scatola A i casi favorevoli sono 30 (il numero delle biglie rosse), mentre i casi possibili sono dati dalla somma delle palline rosse e nere, cioè 30+15=45. E così si ha:

Combinazioni Per comprendere quanto detto prima in merito alla probabilità condizionata, è necessari sapere come si fa un semplice calcolo combinatorio. Prendiamo ad esempio l’insieme A che contiene tre elementi: A = {a, b, c}