TCP E APPLICAZIONI IN AMBIENTE WIRELESS Claudio Enrico Alma Mater Studiorum – Università di Bologna 27 aprile 2004 Facoltà.

Slides:



Advertisements
Presentazioni simili
DiFMon Distributed Flow Monitor Claudio Mazzariello, Francesco Oliviero, Dario Salvi.
Advertisements

Il livello di trasporto
Network Musical Performance: RTP MIDI
Introduzione alle Reti di Prossima Generazione
I protocolli TCP/UDP prof.: Alfio Lombardo.
1 Reti di Calcolatori Esercitazione 5 Implementazione del TFTP tramite RPC Copyright © by D. Romagnoli & C. Salati Alma Mater Studiorum - Universita'
Modello ISO/OSI Un metodo di studio Vallì Rossella Carando 2006 SIS.
5-1 Protocolli ad accesso multiplo Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All.
4-1 Il Livello di Rete Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All Rights Reserved)
I modelli di riferimento OSI e TCP/IP
La rete in dettaglio: rete esterna (edge): applicazioni e host
3-1 User Datagram Protocol: UDP Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All.
Anno Accademico Corso di Informatica Informatica per Scienze Biologiche e Biotecnologie Anno Accademico
Università di Padova Dipartimento di Ingegneria dellInformazione Analisi della Qualità del Servizio in Reti Radio Ad Hoc Special Interest Group on NEtworking.
Università degli Studi di Roma La Sapienza
TCP Transmission Control Protocol. Programmazione II: Programmazione su Reti -- Prof. G. Persiano 2 TCP TCP fornisce un servizio di connessione –orientato.
Reti di Calcolatori IL LIVELLO RETE.
Reti di Calcolatori IL LIVELLO RETE.
Intelligenza Artificiale Algoritmi Genetici
ADSL VOIP Voice Over IP.
MUSE BT Reti di Calcolatori LS A.A. 2006/2007 Manservisi Alberto Music Everywhere with BlueTooth.
Progetto di una architettura per lesecuzione distribuita e coordinata di azioni Progetto per lesame di Reti di Calcolatori L-S Prof. Antonio Corradi Finistauri.
Corso di Informatica per Giurisprudenza Lezione 7
Realizzato da Roberto Savino 3-1 Il livello di trasporto r Dobbiamo assumere di avere a che fare con un canale di comunicazione molto particolare 1. Inaffidabile.
I protocolli TCP/UDP prof.: Alfio Lombardo.
Proposta di unImplementazione per i Servizi di Localizzazione e Traffic Monitoring nellIntelligent Trasportation System Pegasus UNIVERSITÀ DEGLI STUDI.
U N INFRASTRUTTURA DI SUPPORTO PER SERVIZI DI FILE HOSTING Matteo Corvaro Matricola Corso di Reti di Calcolatori LS – Prof. A. Corradi A.A.
Il modello di riferimento OSI
1 Applicazione di videoconferenza in ambiente Multicast con supporto per il protocollo di controllo di congestione RLC Giansalvo Gusinu Relatori: Prof.
Introduzione al controllo derrore. Introduzione Quando dei dati vengono scambiati tra due host, può accadere che il segnale venga alterato. Il controllo.
Calcolo timeout Modulo 2 - U.D. 5 - Lez. 6
Modulo n – U.D. n – Lez. n Nome Cognome – titolo corso.
Efficienza e controllo derrore. Introduzione Come abbiamo visto il controllo derrore, necessario per ottenere un trasporto affidabile, si basa su: somme.
Modulo 2 – U.D. 4 – Lez. 5 (parte I)
Laureando: Giuseppe BRUSCELLA
Informatica Lezione 9 Scienze e tecniche psicologiche dello sviluppo e dell'educazione (laurea triennale) Anno accademico:
L’architettura a strati
Creato da Riccardo Nuzzone
Codifiche Audio/Video: Skype Facoltà di Ingegneria Corso di Studi in Ingegneria Informatica Progetto Reti di Calcolatori 2 – Prof. Giorgio Ventre Codifiche.
Livello di trasporto Protocolli TCP e UDP.
Complementi sul controllo d’errore (parte III). Selective Repeat (richiesta esplicita) Come nello schema Idle RQ, per velocizzare la ritrasmissione di.
UNIVERSITA’ DEGLI STUDI DI ROMA “TOR VERGATA”
Complementi sul controllo d’errore (parte I). Introduzione Lo schema di gestione d’errore Idle RQ garantisce che i pacchetti: – arrivino non corrotti.
Flusso e congestione TCP
Progetto di un sistema di comunicazione di gruppo con multicast causale Reti di Calcolatori L-S Marco Canaparo Matricola
Overlay network strutturate per applicazioni peer to peer Lorenzo Castelli.
PERMESSO PERsistent MESSaging in ad hOc networks Corso di Reti di Calcolatori LS – AA Presentazione di Davide Sansovini Professore: Antonio Corradi.
Flusso TCP (parte II). Trasferimento di grandi quantità di dati (1) Spesso il mittente deve inviare grandi quantità di dati. Genera un numero elevato.
Fast Retransmit. Fast Retransmit (1) Altri indizi di perdite oltre il timeout: possiamo interpretare il verificarsi di sequenze di 4 ACK per lo stesso.
MUSE 2 WIFI MUSic Everywhere with WIFI presentazione di Pierangeli Diego Membri del gruppo: Bambini Stefano Bergamini Andrea Pierangeli Diego AA 2006/2007.
Controllo timeout. Il modo più ovvio per individuare delle perdite è usare il timeout del timer di ritrasmissione. Timeout (1) Attenzione! Con valori.
Servizi continui su rete IEEE – Music Everywhere Presentazione di Alberto Mercati Reti di Calcolatori LS.
Muse2: MUSic Everywhere with WI-FI Progetto realizzato da: Bambini Stefano Bergamini Andrea Pierangeli Diego Bologna C.d.L.S. Ingegneria Informatica.
Università degli Studi di Bologna Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Scienze dell’Informazione Università degli Studi.
Controllo di congestione avanzato. Controllo della congestione TCP Prima del 1988, solo controllo del flusso! TCP Tahoe 1988 − TCP con Slow Start, Congestion.
Corso di Laurea in Biotecnologie corso di Informatica Paolo Mereghetti DISCo – Dipartimento di Informatica, Sistemistica e Comunicazione.
Controllo congestione. Controlli: della congestione e di flusso Problema Controllo della congestione Evitare che più mittenti inseriscano troppi dati.
Progetto MUSE MUSic Everywhere Presentazione di Leardini Francesco Reti di calcolatori LS.
A.A Roma Tre Università degli studi “Roma Tre” Facoltà di Ingegneria Corso di Laurea in Ingegneria Elettronica Servizi di localizzazione a livello.
Informatica Lezione 8 Psicologia dello sviluppo e dell'educazione (laurea magistrale) Anno accademico:
4.2.3 Valutazione delle prestazioni del livello MAC adattativo per reti veicolari Speaker Giacomo Verticale Politecnico di Milano Gruppo reti di telecomunicazioni.
Strato di accesso alla rete (network access layer); comprende le funzioni che nel modello OSI sono comprese negli strati fisico, di collegamento e parte.
Architetture dei sistemi di calcolo, sistemi operativi, reti di calcolatori Dr. Luciano Bononi Facoltà di Scienze, Fisiche Naturali dell’Università di.
Sistemi e Tecnologie della Comunicazione
1 Sistemi e Tecnologie della Comunicazione Lezione 12: data link layer: controllo di flusso, protocolli stop-and-wait e sliding window.
Applicazione Presentazione Sessione Trasporto Rete Data link Fisico OSI Processo / Applicazione Trasporto Rete- Internet Interfaccia di.
INTERNET PROTOCOL SUITE FACOLTA’ DI INGEGNERIA Corso di Laurea Specialistica in Ingegneria delle Telecomunicazioni Docente: Prof. Pasquale Daponte Tutor:
Implementazioni di un analizzatore di protocollo Esistono quattro fondamentali tradeoff per la realizzazione di un analizzatore di protocollo:  Analisi.
1 Il livello transport. Concetti fondamentali - Canale logico e canale fisico 2 Quando un segnale deve essere trasmesso, viene inviato su un Canale, cioè.
Raccogliere informazioni ALCUNE DOMANDE FONDAMENTALI È stato modificato qualche componente HW o SW? Il sintomo si presenta regolarmente o ad intermittenza?
Transcript della presentazione:

TCP E APPLICAZIONI IN AMBIENTE WIRELESS Claudio Enrico Alma Mater Studiorum – Università di Bologna 27 aprile 2004 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di laurea in Scienze dell’Informazione Sistemi e Applicazioni Multimediali

Internet e wireless 1/2 Situazione attuale: – Crescita del traffico di Internet e della sua importanza nel quotidiano – Aumento esponenziale nell’utilizzo di dispositivi mobili (computer portatili, telefoni cellulari, PDA, …) – Incremento nell’utilizzo delle connessioni wireless in generale (Hot Spots, Satelliti, …) Ad Hoc Internet Last Hop Sat

Internet e wireless 2/2 Prospettiva futura: – Interazione tra mobile e Internet sempre più frequente:  comunicazioni a voce e a video su IP  biblioteche virtuali  conference calling indipendenti da luogo e da operatori  telelavoro  giochi on line  video e musica on-demand  supporto al traffico (navigazione e info su congestione vie)  reperimento di informazioni “location-based”

SOMMARIO I.Principali funzioni del TCP II.Problematiche proprie di un ambiente wireless con particolare attenzione a quelle correlate con il TCP III.Tipologia di soluzioni proposte ed esempi (Snoop Protocol, TCP Westwood) IV.Un applicazione pratica per lo streaming video.

Collocazione di TCP Applicazione Presentazione Sessione Trasporto Rete Collegamento Fisico OSI - ISOInternet Applicazione Trasporto - Rete Collegamento TCP

Caratteristiche e funzionalità di TCP Affidabilità della trasmissione Rilascio ordinato dei pacchetti (segmenti) al livello superiore Semantica End-to-End della connessione Controllo del flusso: –Ack cumulativi –Sliding window Controllo della congestione: –Scadenza di timeout o ricezione di 3 DUPACK: perdita di pacchetto Perdite dovute a congestione Riduzione della finestra di invio

TCP: Controllo della Congestione

Contesto Wireless Ad Hoc Internet Last Hop Sat

Diagramma interazione TCP-Wireless BER elevato Incapac. distinz. errore – congest. Latenza variab. Disconn. handoff e fading Errori in burst Latenza elevata Pacch. piccoli: framm. Perdita di tanti pacchetti Diffic. stima RTT-RTO Timeout a sproposito Spreco di Energia Ritrasmiss. ridondanti Restringimento finestra di invio Spreco di tempo Spreco di Bandwidth Data Rate basso Bandwidth bassa Bandwidth variabile Caratteristica wireless Caratteristica TCP Problema conseguente Legenda:

Tassonomia delle soluzioni (livello di trasporto) Divisione della connessione: –Ritrasmissioni locali –Tempestività nell’intervenire sul tratto wireless –TCP specifico sul wireless End-to-End puro: –Nuovo protocollo di trasporto –Mittente consapevole del tratto wireless –Rispetto del paradigma End-to-End

Protocolli di trasporto I-TCP M-TCP Snoop Protocol Delayed Dupacks TCP-Aware Freeze-TCP TCP Probing WTCP Fast TCP TCP Westwood TCP Reno TCP New Reno TCP Vegas TCP Sack TCP tradizionali: Divisione della connessione: End-to-End puri:

Snoop Protocol (Balakrishnan et al., 1995) Ideato per combattere le conseguenze dei BER elevati Implementa nella base station uno Snoop Agent: –Monitoraggio di tutti i pacchetti in transito in entrambe le direzioni –Memorizzazione dei pacchetti non ancora confermati da ack in una cache presente nella base station: Ritrasmissioni locali dei dati persi e filtraggio dei dupack allo scopo di evitare che il mittente invochi meccanismi per il controllo della congestione. Internet Base Station (Snoop Agent) TCP modificato

Snoop Protocol – Esempio (1/9) ack datiin cacheperso Legenda: dupack 16

Snoop Protocol – Esempio (2/9) ack datiin cacheperso Legenda: dupack 16

Snoop Protocol – Esempio (3/9) ack datiin cacheperso Legenda: 19 dupack

Snoop Protocol – Esempio (4/9) ack datiin cacheperso Legenda: 19 dupack

Snoop Protocol – Esempio (5/9) ack datiin cacheperso Legenda: 19 dupack Dupack scartati da BS Ritrasmissione

Snoop Protocol – Esempio (6/9) ack datiin cacheperso Legenda: 19 dupack Dupack scartati da BS

Snoop Protocol – Esempio (8/9) ack datiin cacheperso Legenda: 19 dupack Dupack scartati da BS Niente Fast Retransmit 21

Snoop Protocol – Esempio (7/9) ack datiin cacheperso Legenda: 19 dupack Dupack scartati da BS Niente Fast Retransmit

Snoop Protocol – Esempio (9/9) ack datiin cacheperso Legenda: dupack

Snoop Protocol: Pro & Cons Vantaggi: –Preserva la semantica End-to-End –Effettua recupero locale (e tempestivo) delle perdite –Affronta BER elevati Svantaggi: –Richiede RTT brevi sul tratto wireless –Non gestisce adeguatamente le lunghe disconnessioni –Non utilizzabile subito dopo un handoff (assenza di pacchetti nella nuova cache)

TCP Westwood (Mascolo et al., 2001) Utilizzo di meccanismi puramente End-to-End Controllo del flusso basato sulla stima della bandwidth disponibile (BWE): –Monitoraggio della frequenza di arrivo degli ack al mittente –Utilizzo di BWE per impostare cwnd e ssthresh: ssthresh=BWE*RTTmin anziché TCP Reno: Ssthresh = cwnd/2 se (cwnd > ssthresh) allora cwnd=ssthresh ssthresh=BWE*RTTmin anziché TCP Reno: Ssthresh = cwnd/2 cwnd = 1 Arrivo di tre dupack:Scadenza di timeout:

TCP Westwood (1/3) La prima (e piu’ semplice) versione di TCPW utilizzava uno stimatore di bandwidth (BWE) dato da: t k-1 tktk d k (bit ricevuti nell’intervallo) campione filtro esponenziale guadagno del filtro t k+1

TCP Westwood (2/3) Stima della bandwidth ottenuta per aggregazione dei dati ricevuti durante l’intervallo T. campione filtro esponenziale guadagno del filtro dkdk T d k-1 tktk (intervallo di campionamento)

TCP Westwood (3/3) La dimensione dell’intervallo di campionamento viene continuamente adattato seguendo il livello di congestione misurato TkTk con congestione: T k cresce (risulta una stima piu’ prudente) TkTk adattamento continuo senza congestione: T k = inter ACK (risulta una stima piu’ aggressiva) Throughput massimo, assumendo che non vi sia congestione nel collegamento Throughput corrente reale

TCP Westwood (ssthresh a confronto) cwnd tempo ssthresh = BWE * RTTmin capacità del canale TCP Westwood TCP Reno Perdite casuali ssthresh media TCP Reno guadagno

TCP Westwood: Pro & Cons Vantaggi: –Stima della bandwidth al mittente per impostare la ssthresh e la cwnd che gli permette throughput elevati –Modifiche del codice richieste solo al mittente –Fair & Friendly Svantaggi: –Stima della bandwidth falsata in collegamenti asimmetrici –Assenza di meccanismi specifici per gestire disconnessioni –Scarse prestazioni su pipe piccole –Prestazioni al variare delle dimensioni dei buffer?

Analisi attraverso un modello di confronto Problematiche NON prestazionali: –Ricevente inalterato –Mittente inalterato –Nodi inalterati –Traffico criptato –Semantica E2E –Risparmio energia –Collegam. asimmet. –Fair & Friendly Problematiche prestazionali: –Gest. disconness. –Limitaz. spreco tempo –Gest. BER elevato –Discriminaz perdite –Finestra invio non eccesivam. ridotta –Limitaz. difficoltà calcolo RTT e RTO –Limitaz. ridondanze Snoop Westwood Legenda:

Videostreaming - Background Applicazioni Internet multimedia streaming in aumento La maggior parte di real-time video utilizza UDP: –nessun controllo della congestione –no ACK, no ritrasmissioni –pacchetti di dati inviati con rate prestabilito dal mittente. –potenziale collasso della congestione Ricerca di soluzioni alternative volte a creare dei protocolli per lo streamin video (ma anche audio) che incorporino meccanismi di controllo della congestione

Approcci per il controllo del flusso RAP (Rate Adaptation Protocol) somiglianza con TCP (meccanismo AIMD); adattamento del video trasmesso SR-RTP (Selective Retransmission-RTP) Ritrasmette solo alcuni tipi di pacchetti che trasportano informazioni chiave SCTP (Stream Control Transmission Protocol) somiglianza con TCP; multistream; TFRC (TCP-Friendly Rate Control) somiglianza con TCP tramite equazioni; Limitazioni: – Il meccanismo AIMD (Additional Increase Multiplicative Decrease) provoca oscillazioni nella frequenza di trasmissione – Scarsa utilizzazione della bandwidth disponibile in presenza di errori random

Caratteristiche MPEG-4 Compressione realizzata grazie alla compresenza di frame di diverso tipo (per importanza e dimensioni): Intra-coded frames (I-frames) sono codificati indipendentemente dagli altri frame; fungono da frame di riferimento. Predicted frames (P-frames) dipendono dal frame che li precede (I o P); contengono dati di movimento immagine e informazioni su errori. Bi-directionally predicted frames (B-frames) dipendono sia dal frame precedente e sia da quello succesivo.

VTP: Video Transport Protocol Caratteristiche principali: Stima della bandwidth utilizzata per adattare il flusso video Utilizzo dei livelli di compressione disponibili in MPEG-4 allo scopo di selezionare la qualita’ video piu’ appropriata per la trasmissione Mantenimento di un frame rate costante in modo da preservare la qualita’ percepita del video Equo utilizzo del canale con TCP preservato

Stima della Bandwidth Il ricevente stima la Bandwidth disponibile Tecnica di stima della Bandwidth ispirata al meccanismo di TCP Westwood): B i =(  )B i-1 +(1-  )(b i +b i-1 )/2 B i :stima della bandwidth b i :bandwidth sample (bits_nel_pacchetto/ intervallo tra arrivo di pacchetti)  :coefficiente modificabile Il ricevente retro-invia al mittente la stima della bandwidth periodicamente (almeno ogni RTT)

Algoritmo VTP Copie multiple dello stream video con diversi livelli di quantizzazione (compressione) sono disponibili sul server Lato mittente: se la stima della bandwidth comunicata dal ricevente e’ maggiore o uguale alla frequenza di invio, allora incrementa gradualmente (un pacchetto per RTT) la frequenza di invio (probing phase) Quando la stima della bandwidth e’ sufficiente da supportare il livello di quantizzazione successivo, utilizza lo stream video con un livello di qualita’ superiore e maggiore bitrate. Se la stima della bandwidth ricade sotto la frequenza di invio corrente, utilizza un livello di quantizzazione inferiore

Cambiameto di rate e codifica DR = Stato di Decremento IR = Stato di Incremento Q1, Q2, Q3: Stati di codifica MPEG Esempio: supponiamo di trovarci in Q1 Se la stima della bandwidth eccede l’ultimo valore, andiamo da Q1 a IR1. Controlliamo se la bandwidth e’ sufficiente per supportare Q2. Se non lo e’, incrementiamo il rate e ritorniamo in Q1. Altrimenti, andiamo in Q2.

VTP vs TFRC con errori VTP vs TFRC con perdite casuali – stessa traccia video per entrambi

CONCLUSIONI Integrazione di Internet con ambiente wireless: caratteristiche e problematiche Analisi critica di soluzioni differenti Esempio di applicazione derivata da una delle soluzioni proposte