5) IL CAMPIONE CASUALE SEMPLICE CON RIPETIZIONE

Slides:



Advertisements
Presentazioni simili
Elementi di calcolo delle probabilità
Advertisements

8) GLI INTERVALLI DI CONFIDENZA
2. Introduzione alla probabilità
Variabili aleatorie discrete e continue
STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA
Intervalli di confidenza
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Corsi Abilitanti Speciali Classe 59A III semestre - 3
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Variabili casuali a più dimensioni
Bruno Mario Cesana Stefano Calza
Statistica Descrittiva e Statistica Inferenziale
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni di probabilità
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
Cap. 4 Distribuzioni di frequenza, tabelle e grafici Cioè come si sfruttano i dati grezzi, perché è da qui che inizia l’analisi statistica.
Inferenza statistica per un singolo campione
DISTIBUZIONE BINOMIALE
Appunti di inferenza per farmacisti
LA PROBABILITA’.
Corso di Probabilità e Inferenza 1
Cap. 2 Definizioni e notazione (simboli) di base
DEFINIZIONE CLASSICA DI PROBABILITA’
Analisi Statistica dei Dati
METODI E CONTROLLI STATISTICI DI PROCESSO
REGOLE DEL CALCOLO DELLE PROBABILITA’
Introduzione Statistica descrittiva Si occupa dellanalisi dei dati osservati. Si basa su indicatori statistici (di posizione, di variazione, di concentrazione,
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Elementi di teoria della probabilità e distribuzioni di probabilità
Calcolo delle Probabilità
Le distribuzioni campionarie
Teorie e Tecniche di Psicometria
Unità 6 Test parametrici e non parametrici Test per la verifica della normalità Funzione di ripartizione.
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
La teoria dei campioni può essere usata per ottenere informazioni riguardanti campioni estratti casualmente da una popolazione. Da un punto di vista applicativo.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
Probabilità e Variabili Casuali
Evento: “Fatto o avvenimento che già si è verificato o che può verificarsi ….” Gli eventi di cui ci occuperemo saranno soltanto gli eventi casuali, il.
ATTIVITÀ PIANO LAUREE SCIENTIFICHE Laboratorio di Statistica
Accenni di analisi monovariata e bivariata
Martina Serafini Martina Prandi
IL CAMPIONE.
“Teoria e metodi della ricerca sociale e organizzativa”
La statistica F Permette di confrontare due varianze, per stabilire se sono o no uguali. Simile al valore t di Student o al chi quadrato, l’F di Fisher.
Test basati su due campioni Test Chi - quadro
Def : uno stimatore è una statistica T n le cui determinazioni servono a fornire delle stime del parametro ignoto  della v.c. X in cui sono state effettuate.
2) PROBABILITA’ La quantificazione della ‘possibilità’ del verificarsi di un evento casuale E è detta probabilità P(E) Definizione classica: P(E) è il.
Intervalli di confidenza
Spiegazione di alcuni concetti
PROBABILITÀ Corsi Abilitanti Speciali Classe 59A III semestre - 2.
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
ELEMENTI DI CALCOLO DELLE PROBABILITA’
Elaborazione statistica di dati
Dalmine, 26 Maggio 2004 Esercitazioni di Statistica con Matlab Dott. Orietta Nicolis fttp:\ingegneria.unibg.it.
Probabilità Esercitazioni numeriche del corso di GENETICA AA 2010/2011 LEZIONE N°1.
Studio fenomeni collettivi
Elementi di teoria delle probabilità
STATISTICA P IA F ONDAZIONE DI C ULTO E R ELIGIONE C ARD. G. P ANICO Azienda Ospedaliera CORSO DI LAUREA IN INFERMIERISTICA Sr. Margherita Bramato.
Elementi di teoria della probabilità e distribuzioni di probabilità.
1 LA STATISTICA DESCRITTIVA Docente prof.sa Laura Mercuri.
La probabilità matematica
Campionamento procedimento attraverso il quale si estrae, da un insieme di unità (popolazione) costituenti l’oggetto delle studio, un numero ridotto di.
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
ELEMENTI DI CALCOLO DELLE PROBABILITA’. Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento.
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Transcript della presentazione:

5) IL CAMPIONE CASUALE SEMPLICE CON RIPETIZIONE

CAMPIONE: sottoinsieme delle unità che formano la popolazione oggetto di riferimento. ESEMPIO P=popolazione formata da N=4 unità (palline) sulle quali sono presenti le manifestazioni di un generico fenomeno qualitativo X (contrassegno). A seguito di una rilevazione si ottiene: Variabile statistica Oppure (con la variabile statistica articolata in frequenze relative):

Numero casi favorevoli Si vuole ora avere informazioni sullo stesso fenomeno ma entrandone in possesso solo in via campionaria. Si effettuano cioè in P n=2 scelte “bernoulliane”: supponendo le palline assolutamente identiche (a meno del contrassegno) se ne estrae una; letto il numero, la si introduce ancora nell’urna (per riprodurre nuovamente la variabile statistica c), quindi si procede ad una seconda estrazione. Supponendo che la coppia di numeri estratti sia (170,160), essa viene chiamata “campione bernoulliano” articolato in n=2 prove. L’attributo “con ripetizione” indica che la stessa pallina può essere estratta in entrambe le prove. Definizione classica di probabilità: Numero casi favorevoli Numero casi possibili Condizione: i casi possibili devono tutti essere alla pari

Nel nostro caso le relative probabilità di costituire l’esito della scelta sono: Le tre coppie (160,1/4), (170,2/4), (180,1/4), prendono il nome di variabile casuale  X. N.B. C  X Cioè la variabile statistica e la variabile casuale coincidono essendo le quattro palline identiche e note per quanto riguarda i rispettivi contrassegni. Ovviamente la var. statistica tiene conto di ciò che si è osservato, mentre la var. casuale descrive ciò che potrà accadere. Ora: con la prima scelta può accadere:

Ciò che può accadere nella prima scelta è descritto dalla v.c. X1: con la seconda scelta può accadere: Poiché ciascun risultato della seconda scelta può associarsi a ciascun risultato della prima, le coppie possibili (una delle quali costituirà l’esito campionario) sono: I prova (x1) II prova (x2) campione (x1, x2) 160 (160, 160) 160 170 (160, 170) 180 (160, 180) : 160 (170, 160) 170 170 (170, 170) 180 (170, 180) 160 (180, 160) 180 170 (180, 170) 180 (180, 180)

Le nove coppie (x1, x2) sono le possibili determinazioni della v. c Le nove coppie (x1, x2) sono le possibili determinazioni della v.c. bidimensionale (X1, X2). Si tratta ora di associare ai nove campioni le corrispondenti probabilità di essere l’esito delle 2 prove. Essendo le due prove in questione indipendenti, cioè tali che l’esito di una prova prescinde totalmente dall’esito dell’altra, la probabilità che la v.c. (X1, X2) valga la coppia (x1, x2) è data da: P(X1 = x1, X2 = x2) = P(X1 = x1)·P(X2 = x2) Le probabilità associate alle nove coppie campionarie si riassumono nella seguente tabella dove i valori interni sono proprio queste probabilità, mentre i valori dell’ultima riga e dell’ultima colonna sono le probabilità chiamate marginali, che caratterizzano gli eventi della prima prova e della seconda prova separatamente.

In precedenza si è supposto che le due scelte nell’urna fornissero la coppia (170,160); dalla tabella emerge ora che un tale evento ha probabilità di verificarsi pari a 1/8. In pratica la formazione del campione non avviene ricorrendo alla scelta con ripetizione in un’urna dove è riprodotta la popolazione in esame, ma avviene secondo criteri proposti dalla teoria delle rilevazioni campionarie. In generale il campione viene realizzato con una scelta in blocco di n unità, cioè n unità contemporaneamente, così che sia esclusa la possibilità di assumere più di una volta la stessa informazione.

È possibile provare che, se la numerosità della popolazione è sufficientemente elevata, i due campioni con ripetizione o in blocco portano agli stessi risultati. Per questo motivo si suppone spesso che il campione sia del tipo con ripetizione che consente il ricorso a formule più semplici.