un acceleratore di fasci radioattivi a Legnaro Il progetto SPES: un acceleratore di fasci radioattivi a Legnaro per informazioni ulteriori http://www.lnl.infn.it/~spes/TDR2008/executive_summary_2008.pdf
Nuclear-Structure Physics Fundamental Interactions What are the limits for existence of nuclei? How do weak binding and extreme proton-neutron asymmetry affect nuclear properties? How to built complex nuclei from their basic constituents? What is the origin of the elements? .... Research with exotic nuclei (extreme N/Z ratio) Nuclear-Structure Physics Nuclear Astrophysics Fundamental Interactions Applications
Radioactive Beams Physics Neutron-rich beams
Origin of the elements heavier than iron Element formation beyond iron involve rapid neutron capture and radioactive decay Despite many years of intensive effort, the r-process site and the astrophysical conditions continues to be an open question.
Shell evolution Experimenlal Signatures: Element formation in r-process: quenching of shell-structure? Pfeiffer et al., Z. Phys. A357 (1997) 235 A possible shrinking of the shell-closure feature has also been suggested from the comparison of the measured and calculated solar nuclear abundances for heavy elements. Network calculations for the solar isotopic abundances coming from the rapid neutron-capture processes involved in the explosive stellar nucleosynthesis reproduce the three peaks observed at A=80, 130 and 195 if, for very neutron-rich nuclei, the magic neutron numbers are less pronounced than assumed from nuclear structure studies. Due to the drastic change in single particle energies the magicity at N=40 and N=70 Would be enhanced whereas the N=50 and N=82 gaps would be reduced, bringing Back the description of nuclei in terms of harmonic oscillator potentials. Experimenlal Signatures: Energies of the excited levels Nucleon Separation energies Transition matrix elements
New Density Distributions Neutron-rich matter and neutron skins New Density Distributions Lead Nucleus 10 fm skin Neutron Star crust 10 km What is happening? Both neutron skin and neutron star crust are made out of neutron rich matter at similar densities.
SPES -RIB facility Fission fragments 238U (UCx) Experiments 1013 f/s RIB INTENSITY: 107-109 rare ions/s on the experimental target Neutron Rich Isotopes A: 80-160 The SPES project is a Mid-term ISOL Facility for the production of n-rich beams by the fission of Uranium target. The produced isotopes are in the region of the neutron rich in the mass range 80-160. RIB INTENSITY of 107-109 rear ions/s on the experimental target are expected with a fission rate of 1013 fission/s A Mid-term ISOL Facility for the production of n-rich beams by the fission of Uranium target
A review of the ISOL facilities in the world Primary beam Power on target target Fission s-1 Reaccelerator AMeV A=130, 20+ 132Sn rate ISOLDE p 1-1.4 GeV - 2 mA 0.4 KW Direct 4·1012 Linac 3 107 HRIBF p 40 MeV 10 mA 4·1011 Tandem 25MV 4 2·105 SPIRAL C-Kr 95 AMeV 6 KW Cyclotron TRIUMF p 450 MeV 70 mA 17 KW SC Linac CRC UCL p 30 MeV 300 mA 9 KW EXCYT 13C 45 AMeV 0.5 KW 15MV HIE ISOLDE upgrade Direct 4·1012 SC Linac 5-10 2·108 HRIBF up-grade p 54 MeV 20 mA 1.8KW 1012 Tandem 25MV 4 5·105 SPIRAL2 d 40 MeV 5mA 200 KW Convert. 1014 Cyclotron 6 2·109 SPES p 40 MeV 200 mA 8 KW 1013 10 3·108
General SPES layout Neutron Facility: BNCT – LENOS Thermal neutrons 109 n cm-2 s-1 Fast neutrons 1014 n s-1 TRASCO RFQ: protons 5MeV 25mA Direct Target 1013 f s-1 Mass Separator (on HV platform 250KV) Charge Breeder (200KW) installed over HV platform (250KV) Cyclotron: protons 70 MeV 0.75mA Cryopanel High Resolution Mass Selector 1/20000 SC RFQ PIAVE SC Linac ALPI General SPES layout
The SPES main components 3 2 1 - Driver 1 4 2 - Target-Ion Source 18/04/2017 The SPES main components 3 2 1 - Driver 2 - Target-Ion Source 3 - Beam Transport-Selection 1 Cyclotron 70 MeV protons 750 mA 4 Direct target, UCx disks, 1013 fissions/sec Surface Ion Source ,FEBIAD and RILIS Ion sources 3 5 4 - Charge Breeder 5 - Reaccelerator ECR charge breeder 132Sn26+ High-resolution mass spectrometer 1/20000 the present, PIAVE-ALPI accelerator with improved performances 10
The driver cyclotron IBA C70 cyclotron 2 exit ports 18/04/2017 The driver cyclotron IBA C70 characteristics: Diameter < 4m Weight > 120t Magnetic Gap: 30mm Magnetic field: 1.55T Extraction Radius: 1.2m 2 exit ports SPES design Particles: H- / D- / He2+/ HH+ Variable Energy : 15 MeV 70 MeV extraction Systems: Stripper H- / D- Deflector He2+/ HH+ Performances: 750µA H- 70MeV : 35µA He2+ 70MeV IBA C70 cyclotron 11
SPES target Exotic beam: 1+ Dump: graphite Target: UCx (30gr) 18/04/2017 SPES target UCx disks 4cm dia Total wheight 30gr Graphite container UCx discs Tantalum Heather 1013 fissions/sec Proton Beam 200mA 40 MeV 8kW Exotic beam: 1+ Fission efficiency 100p per 1.5 Fission Fragments Power density in UCx = 70W/gr Basic ideas: - MULTIPLE UCX SLICES : increase the surface radiation area (P= ε·σ·S· T4 Stefan-Boltzmann law) - GRAPHITE DUMP : stops protons with low fission rate & high stopping power value 12
SPES Target Activities 18/04/2017 SPES Target Activities Sub-TASK1: Mechanical Development Thermo-Mechanical Calculation Handling Calculation CAD mechanical drawings Development of target prototypes - Front- end & new devices Sub-TASK2: Material Development Carbide productions Carbide characterizations New porous material - New characterization methods LaC pellets: Final SPES dimension Sub-TASK3: Ion Source Development - Laser tests at Pavia lab 13
18/04/2017 The SPES Ion Sources Ionization schema with a Surface ionizer coupled to a Laser beam Hot surface Atom Ion Surface ionization Ionization energy < 5-6 eV Ground state continuum Conductive band Fermi Work function Ion Laser ionization Atom laser Ionization energy < 9 - 10 eV Ground state continuum Excited states Laser beam 14
Laser source development: INFN-Pavia Nota per SPES: Laboratorio spettroscopia laser – Pavia Il laboratorio nel passato si è a lungo occupato degli aspetti spettroscopici della separazione isotopica mediante laser. Tale tecnica si basa sulla fotoionizzazione selettiva in presenza di shift isotopici a frequenza ottica: la sua applicazione per separare gli elementi chimici generati nella fissione, come inizialmente richiesto in SPES, è una versione per certi versi semplificata. Attualmente il laboratorio è attrezzato con tre laser sintonizzabili a colorante, dotati anche di duplicatori di lunghezza d’onda. E’ presente un laser a Nd-Yag in seconda armonica che può essere impiegato come pompa dei laser sintonizzabili suddetti. Poiché la sua frequenza di sparo è limitata a 10 Hz, questo sistema laser è utile per la sola messa a punto del miglior cammino di fotoionizzazione. Infatti nella versione operativa è necessario lavorare a più alta frequenza di ripetizione, circa 10 KHz, utilizzando per es., come pompa laser Nd-Yag a loro volta alimentati con laser a diodi (DPSS, diode pumperd solid state) che ad un certo punto dovranno essere acquisiti. Il sistema DPSS e laser a coloranti è quello ora in uso ad ISOLDE. Altri laboratori, come TRIUMF e ORNL, stanno orientandosi su sistemi tutti allo stato solido, in cui laser DPSS pompano laser sintonizzabili a Ti-Sa. Gli sviluppi dei prossimi anni porteranno alla scelta più opportuna, tenuto conto anche di quali elementi si intende fotoionizzare. E’ importante sottolineare che il laboratorio è fornito di quella strumentazione ottica ed elettronica indispensabile nella fase di messa a punto – per un dato elemento chimico - della tecnica di fotoionizzazione a maggior efficienza. 15
Radiation protection FLUKA simulations Ambient dose equivalent [mSv/h] in the target hall and shielding walls around. Protons 70MeV 300 mA on UCx target horizontal UCx tantalum vertical LNL Radiation Prot. Serv. L. Sarchiapone, D. Zafiropoulos
Radioactive Ion Beam transport lines 18/04/2017 Radioactive Ion Beam transport lines 20 m TIS – RF Cooler - WienFilter (60kV extraction + 200kV platform) CBMS 1/2500 Charge Breeder (HVplatform 250kV) HRMS 1/20000 8 m 15 m cryopanel 43 m 17
Second stage of the EXCYT isobaric mass separator High Resolution Mass Separator 18/04/2017 Comparison of the main parameters of the EXCYT and the SPES mass spectrometer. SPES HRMS design Project name EXCYT SPES Number of dipoles 2 Bending Angle 90° 110° Bending radius 2.6 m Entrance/exit angle 12.8° 32° Magnetic field range 0.6 - 4.4 kGauss 1.0 - 4.4 kGauss beam size at analysis slits 0.4 mm Teta acceptance 40 mrad (x,x’) emittance 4 mm.mrad Y beam size 2 mm Phi acceptance 10 mrad (y,y’) emittance 5 mm.mrad Resolving power >15.000 >20.000 Dispersion 16 m 28 m Second stage of the EXCYT isobaric mass separator 18
Charge Breeder For the SPES Progect 18/04/2017 Charge Breeder For the SPES Progect ECR ION SOURCE SUPERNANOGAN BY PANTECHNIK FULLY PERMANENT MAGNET @ 14 GHz FPMS ROOM TEMPERATURE @ 14-18GHz RTS HT SUPERCONDUCTING @ 18 GHz HTS FULLY SUPERCONDUCTING @ >18 GHZ FSS LPSC Booster KEKCB @ TRIAC PHDelis BY PANTECHNIK 19
Nb/ Cu spattered cavities PIAVE upgrade for SPES - new bunching section - new diagnostics - new cryostats Nb/ Cu spattered cavities or bulk Nb cavities ALPI superconductive Linac up-grade: Low Beta cavities Stronger Magnetic lenses
Some expected Beams at SPES 18/04/2017 Some expected Beams at SPES ionization efficiencies: (1+) 30% and (n+) 4% (1+) 90% and (n+) 12% for Kr and Xe, Transport efficiency 50% 21
The SPES neutron Facility TRIPS source: 30-50mA protons Neutron production based on High Intensity proton beam Installed and in operation at LNL TRASCO RFQ: 5 MeV High Intensity proton accelerator > 30mA (150kW beam power) 6/6 modules machined RFQ1 and RFQ2 brazed and accepted RFQ3 first brazing performed All modules brazed within 2008 22
SPES-BNCT project γ Conversion target (Beryllium) 0.84 MeV 7Li* Neutron production reaction: 30mA, 5MeV p + Be γ 11B 10B 11B 0.48 MeV (94% events) 171 cm 156.5 cm 187 cm LiF (2.5 cm) LiF (1 cm) BeO Pb BeD2 Bi D2O n 4He 1.47 MeV Conversion target (Beryllium) Proton beam: 5MeV 30mA Exit port 109 n cm-2s-1 Be target after test at 150 KW Excellent thermal neutron beam Low gamma field th (E 0.4 eV) (cm-2s-1) th total Knth (Gy·h-1) Kn epi-fast K K Kn tot Kn (E>10 eV) / th (Gy·cm2) K / th Ref. > 1E+09 > 0.90 ≤ 2E-13 Fase-III 1.17E+09 0.99 0.70 0.0008 0.58 0.8 7.93E-16 1.38E-13 23
The LENOS facility ¤ Activation Facility (cw beam: I = 30mA) An irradiation facility to fulfill the increasing demand of high-flux neutron beams, meeting the needs of a large National and International community for studies related to several Interdisciplinary fields, from Astrophysics to bio-medicine, from development of new detectors and electronics to material research. Neutron production: 7Li(p,n) ¤ Activation Facility (cw beam: I = 30mA) n energy range = 1-300 keV astrophysics interest (sTOT -> MACS) - neutron flux ~ 1010 n/s·cm2 - small radioactive samples: 1015 atoms/cm2 -> implantation of SPES RIBs (2 weeks) Degradatore di Energia Bersaglio di litio Selettore di fascio Filtro di Wien Possibile produzione bersaglio con fascio SPES ~5% fascio primario ~ 2mA Spettro neutroni stellari 1010 n/s·cm2 Fascio protoni 30-50 mA Bersaglio in studio Lo spettro neutronico si puo’ modulare In figura kT=48 keV ma interesse per kT=30 e kT=90 (nel caso di stelle massicce, come nel caso riportato del Ba) Pierfrancesco Mastinu
SPES project organization Advisory Committee Management board Project Leader: G.Prete Technical Coordinator: A.Pisent Scientific Coordinator: A.Covello Qualified Expert: D.Zafiropoulos Task Leaders Project manager LNL Director: G.Puglierin LNS Director: M.Lattuada Steering Committee La Rana, Pirrone, Colonna, Million, Bruno, Lunardi, Corradi, Casini, Cuttone, Alba The Management Board takes care of the project schedule and resource assignment. The Steering Committee evaluates the project development according to milestones and assigned investment. The International Advisory Committee has the mandate to evaluate the adopted technical solutions and the scientific program. The SPES group is the working group for SPES realization and guaranties the technical and scientific support to the project. SPES Working Group Safety & Control, Infrastructure, TIS, RIB manipulation, pDriver, Re-acc, Neutron Facility, Scientific Support
SPES Economic plan SPES first priority kEuro Infrastructures RIB 12340 Target (2 stations) 5900 Beam Transfer 7650 Cyclotron 8400 Re-accelerator upgrade 7000 41290 Infrastructures NeutronFacility 3744 High Intensity Linac 3632 Neutron Facility BNCT - LENOS 3330 10706 total 51996 To be developed with external fundings 26
SPES funding phase 1 RIB’s Buildings 2 Meuro 16 Meuro 14 Meuro 11 Meuro 2006 2008 2009 2010 2011 2012 2013 phase 1 RIB’s Buildings Cyclotron with safety and infrastructures Proton beam transport Target Ion Source (TIS) for RIB Low Beta ALPI upgrade phase 3 phase 2 Second TIS HRMS 1/20000 Pulsed Beam on reaccelerator TIS safety and infrastructures for UCx ChargeBreeder RIB reacceleration
SPES SCHEDULE Critical timing Second priority 2008 2009 2010 2011 2012 18/04/2017 SPES SCHEDULE 2008 2009 2010 2011 2012 2013 2014 Facility design First Target and ion source Second target and ion source Authorization to operate Building construction Target installation and commissioning Completion of RFQ for Neutron Facility Installation and commissioning Neutron Facility Cyclotron construction Cyclotron Installation and commissioning Alpi preparation for post acceleration Installation of RIBs transfer lines and spectrometer Complete commissioning Critical timing Second priority 28
SPES Working group: INFN INFN Laboratori Nazionali di Legnaro: A.Andrighetto, M.Barbui, G.Bassato, A.Battistella, G.Bisoffi, E.Brezzi, M. Calviani, S.Canella, D.Carlucci, S.Carturan, M.Cavenago, F.Cervellera, R.Cherubini, M.Cinausero, M.Comunian, P.Colautti, L.Corradi, L.Costa, A.Dainelli, G.de Angelis, A.D’Este, J.Esposito, P.Favaron, E.Fagotti, E.Fioretto, M.Giacchini, F.Gramegna, F. Grespan, P.Ingenito, A.Lombardi, M.Lollo, G.Maggioni, G.Martin Hernandez, P.Mastinu, P.Modanese, M.F.Moisio, D.Napoli, A.Palmieri, R.Pegoraro A.Pisent, M.Poggi, A.Porcellato, P.A.Posocco, J.Praena, G.Prete, G.Puglierin, M.Rigato, V.Rizzi, C.Roncolato, Y.Shengquan, S.Stark, A.M.Stefanini, M.Tonezzer, D.Zafiropoulos INFN Laboratori Nazionali del Sud, Catania: L.Calabretta, L.Celona, F.Chines, L.Cosentino, G.Cuttone, P.Finocchiaro, S.Gammino, M.Lattuada, G.E.Messina, M.Re, D.Rizzo, A. DiPietro INFN and Dipartimento di Fisica, University of Padova: S.Beghini, L. De Nardo, P.Mason, M.Mazzocco G.Montagnoli, F.Scarlassara, G.F. Segato, C.Signorini, S.Lenzi INFN and Dipartimento di Fisica, University of Torino: G.Pollarolo INFN Sezione di Bari: V.Variale, N. Colonna INFN and Dipartimento di Fisica, University of Pavia: P.Benetti INFN and Dipartimento di Fisica, University of Napoli: G. La Rana, A. Covello, A. Gargano, D. Pierroutsakou INFN and Dipartimento di Fisica, University of Firenze: G. Casini INFN and Dipartimento di Fisica, University of Bologna: M. Bruno, M. D’Agostino INFN and Dipartimento di Fisica, University of Milano: B. Million, G. Colò INFN and Dipartimento di Fisica, University of Catania: S. Pirrone,
SPES working Group: Italian Insitutions University of Padova Dipartimento di Ingegneria Meccanica: L. Biasetto, P. Colombo, M. Manzolaro, G. Meneghetti, Dipartimento di Ingegneria delle Costruzioni e Trasporti: V. Salomoni, C. Majorana Dipartimento di Scienze chimiche: P. Di Bernardo, P. Zanonato, L. Piga ENEA, Bologna: C. Antonucci, S. Cevolani, C. Petrovich, R. Tinti LASA,Milano: C. De Martinis Dipartimento di Ingegneria Meccanica, University of Trento: I. Cristofolini, M. De Cecco, R. Oboe Dipartimento di Ingegneria Nucleare, University of Palermo: G. Vella, E. Tomarchio, S. Rizzo, P. Guarino
Sezione di Padova Esperimenti legati alla Fisica di SPES EXOTIC GAMMA PRISMA
EXOTIC layout della linea di trasporto e di selezione Il gruppo EXOTIC ha collaborato al gruppo di studio sullo spettrometro ad alta risoluzione. P-40 MeV 0.2 mA 238U target +20 kV Low mass resolution selection High mass On -60 kV plat X+1 Charge breeder On +20kV X+n Bunching RFQ PIAVE SRFQ ALPI RFQ-DTL 238U target +250 kV High mass On +250kV Separation between high and low radiation zones layout della linea di trasporto e di selezione
AGATA GAMMA Next generation spectrometer based on gamma-ray tracking 4 germanium array No suppression shields Very high efficiency and spectrum quality For radioactive beams facilities such as SPES, SPIRAL2, FAIR
The Heavy-Ion Magnetic Spectrometer PRISMA The Heavy-Ion Magnetic Spectrometer PRISMA is a magnetic spectrometer for heavy ions installed at Legnaro, with very large solid angle (80 msr), wide momentum acceptance (10 %) and good mass resolution (1/300) F.Scarlassara, S.Beghini, P.Mason, G.Montagnoli Univ. di Padova and INFN - Sezione di Padova + LNL , Univ. e Sezioni INFN di Napoli e Torino Il gruppo PRISMA padovano ha in programma nel prossimo futuro di indagare le possibilita` che lo spettrometro potrebbe offrire usando i fasci radioattivi che saranno prodotti da SPES. Le caratteristiche di PRISMA ne fanno uno strumento ideale per l'uso con fasci esotici. In ambito SPES e' in fase di perfezionamento un accordo di collaborazione con ISOLDE (CERN), ove si intende costruire uno spettrometro simile. Il gruppo PRISMA di Padova si sta occupando dell'utilizzo dello spettrometro in “gas-filled mode”, che consente di misurare a zero gradi in particolare reazioni di fusione; questo sviluppo riguarda soprattutto il “dopo-Agata” e l’utilizzo di fasci prodotti da SPES.
Sezione di Padova Il progetto SPES, per poter essere realizzato, ha bisogno del contributo delle Sezioni INFN, ad esempio in termini di lavori di officina. La sezione di Padova può quindi contribuire a costruire parti del progetto (esempio: separatore di massa ad alta risoluzione previsto nella terza fase) con la sua officina meccanica.
The INFN Legnaro Laboratory 18/04/2017 The INFN Legnaro Laboratory SPES Area 2 MeV VdG 7 MV VdG Exp Hall Exp Halls SC RFQ PIAVE Tandem SC Linac ALPI 36