Cenni a calcolo di probabilità elementare

Slides:



Advertisements
Presentazioni simili
Dr. Marta Giorgetti Esercizi Calcolo combinatorio, spazio degli eventi, probabilità, indipendenza, teorema di Bayes.
Advertisements

Elementi di calcolo delle probabilità
La probabilità nei giochi
La Matematica tra Gioco e Realtà
DISTRIBUZIONE BINOMIALE (cenni) DISTRIBUZIONE NORMALE
Variabili Casuali Quale che sia uno spazio campionario S è possibile definire una o più funzioni che associno ogni elemento di S a un elemento di Â. Consideriamo.
Definizione di probabilità, calcolo combinatorio,
Variabili aleatorie discrete e continue
La probabilità.
Corsi Abilitanti Speciali Classe 59A III semestre - 3
Bruno Mario Cesana Stefano Calza
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni di probabilità
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Marco Riani STATISTICA A – K (60 ore) Marco Riani
STATISTICA A – K (60 ore) Marco Riani
Calcolo delle Probabilità
Torna alla prima pagina Sergio Console Calcolo Combinatorio e cenni di calcolo delle Probabilità Istituzioni di Matematiche Scienze Naturali.
Dizionario Zingarelli
“Matematica utile: saper esprimere e usare il pensiero matematico - 1”
verificarsi di un evento probabilità di vincere
LA PROBABILITA’.
Corso di Probabilità e Inferenza 1
Impostazione Assiomatica del Calcolo della Probabilità
DEFINIZIONE CLASSICA DI PROBABILITA’
Essa, per ottenere i dati da utilizzare, si avvale di una RILEVAZIONE
Disposizioni probabilità con dadi-gettoni
Calcolo delle probabilità
LABORATORIO SCIENTIFICO
Orientamento universitario
Hai 15 secondi per rispondere Numero uscitoFrequenza Un dado non truccato è stato lanciato 50 volte di seguito e si sono registrati.
La probabilità Schema classico.
Carte casuali.
Calcolo delle Probabilità
QUALCHE LUCIDO DI RIPASSO… 1. Esperimento casuale ( e. aleatorio) risultato Esperimento condotto sotto leffetto del caso: non è possibile prevederne il.
Teorie e Tecniche di Psicometria
Lancio dadi Analisi probabilità esito somme varie.
Esempi risolti mediante immagini (e con excel)
Estrazione Casuale palline
Esercizio 1 Da un mazzo di carte da 40 estraggo casualmente e senza reimmissione 3 carte: quante sono le possibili terne? considerate i seguenti eventi:
LA PROBABILITA’ La probabilità nella concezione classica
Esercizi con soluzione
Probabilità ed eventi casuali (Prof. Daniele Baldissin)
PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
Variabili Casuali Quale che sia uno spazio campionario S è possibile definire una o più funzioni che associno ogni elemento di S a un elemento di Â. Consideriamo.
IL CALCOLO DELLE PROBABILITA’
Rischio e Probabilità. Probabilità di un Evento P(E)  P(E)=1 o 100% => evento certo;  P(E) molto piccolo => evento improbabile;  P(E)=0 o 0% => evento.
Calcolo combinatorio e probabilità
PROBABILITA’ Scienza che studia i fenomeni retti dal caso EVENTO (E): avvenimento che può accadere oppure no 1.certo: se si verifica sempre (es. nel lancio.
Evento: “Fatto o avvenimento che già si è verificato o che può verificarsi ….” Gli eventi di cui ci occuperemo saranno soltanto gli eventi casuali, il.
Appunti conclusioni simulazione lancio dadi
Probabilità. Un percorso didattico esperimenti e simulazioni L. Cappello 9 Maggio Didattica probabilità e statistica PAS 2014.
Master in Neuropsicologia ClinicaElementi di Statistica I 17 maggio / 23 Analisi bivariata Per ogni unità statistica si considerano congiuntamente.
Spiegazione di alcuni concetti
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
Probabilità e Genetica
ELEMENTI DI CALCOLO DELLE PROBABILITA’
Probabilità Esercitazioni numeriche del corso di GENETICA AA 2010/2011 LEZIONE N°1.
LA PROBABILITA’.
Il metodo Singapore nella risoluzione di Problemi assegnati ai Giochi Matematici Claudio Marchesano.
16) STATISTICA pag.22. Frequenze frequenza assoluta (o frequenza): numero che esprime quante volte un certo valore compare in una rilevazione statistica.
Elementi di teoria della probabilità e distribuzioni di probabilità.
La probabilità matematica
METODI E TECNOLOGIE PER L’INSEGNAMENTO DELLA MATEMATICA Lezione n°17.
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Postulati.
LA PROBABILITA’. CHE COS’E’? La probabilità di un evento è il quoziente tra il numero dei casi favorevoli a quell’evento e quello dei casi possibili quando.
ELEMENTI DI CALCOLO DELLE PROBABILITA’. Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
LA LA PROBABILITA'.
Transcript della presentazione:

Cenni a calcolo di probabilità elementare

La probabilità che un evento possa verificarsi, nella ipotesi che siano tutti equiprobabili (senza trucchi..) si calcola con il rapporto tra il numero dei casi favorevoli a un evento e il numero totale degli eventi possibili Px = nx / ntotali Esempio : un dado a sei facce con numeri 1, 2 ,3, 4, 5, 6 eventi totali possibili = 6 eventi favorevole all’uscita di uno specifico numero :uno per numero P1 = 1/6 P2= 1/6 P3 = 1/6 P4 = 1/6 P5 = 1/6 P6 = 1/6

Contenitore con 10 palline( non visibili): 5 rosse e 5 azzurre Probabilità di estrarre come prima pallina una rossa ? Una azzurra ? PR = nRosse / nTotale 5 / 10 = ½ = 0.5 PA= nAzzurre/nTotale 5 / 10 = ½ = 0.5 Probabilità X = eventi favorevole a X / eventi totali possibili (X + Y) Eventi favorevoli a X (rossa= = 5 eventi favorevoli a Y (azzurra=5) eventi totali = 10

Contenitore con 10 palline( non visibili): 2 rosse e 8 azzurre PR = nRosse / nTotale 2 / 10 = 1/5 = 0.2 PA= nAzzurre/nTotale 8 / 10 = 4/5 = 0.8 Probabilità di estrarre come prima pallina una rossa ? Una azzurra ?

Contenitore con 10 palline( non visibili): 2 rosse e 8 azzurre PR = nRosse / nTotale 2 / 10 = 1/5 = 0.2 PA= nAzzurre/nTotale 8 / 10 = 4/5 = 0.8 Probabilità di estrarre come prima pallina una rossa ? Una azzurra ?

Contenitore 1 : 3 rosse, 4 azzurre Palline non visibili: da quale contenitore estrarre una pallina per avere la più grande probabilità che sia rossa ? PR= 3/7 = 0.43 PA = 4/7 = 0.57 PR= 5/7 = 0.71 PA= 2/7 = 0.29 Si osserva evidentemente che conviene estrarre da C2

Contenitore 1 : 3 rosse, 4 azzurre Palline non visibili: da quale contenitore estrarre una pallina per avere la più grande probabilità che sia rossa ? PR= 3/7 = 0.43 PA = 4/7 = 0.57 PR= 5/11 = 0.45 PA= 6/11 = 0.55 Si osserva che, anche se con piccola differenza, conviene estrarre da C2

In un contenitore, opaco, ci sono 10 monete: sette da 100 lire, due da 50 lire , una da 20 lire È sempre certa la estrazione di una moneta è decrescente la probabilità di estrarre una determinata moneta P100 > P 50 > P20 manca la possibilità che venga estratta una moneta diversa da 100, 50, 20 PC = 10/10 = 1 massima probabilità P100 = 7/10 = 0.7 P50 = 2/10 = 0.2 P20 = Px = 0/10 = 0

Esempio: mazzo di 40 carte da gioco (4 tipi diversi) Probabilità che la prima carta scelta sia un asso ? Eventi possibili = 40 carte evento favorevole , asso(a), = 4 Pa = 4 / 40 = 0.1 Probabilità che la prima carta sia un asso di spade ? Eventi possibili = 40 carte evento favorevole , asso(s), = 1 Ps = 1 / 40 = 0..25 Probabilità che la prima carta scelta sia diversa da un asso ? Eventi possibili = 40 carte evento favorevole , diverso da asso(d) = 36 Pd = 36 / 40 = 0.9

Lancio contemporaneo di tre monete (testa/croce) Probabilità che escano insieme almeno 2 croci ? testa croce TTT CCC TCT CTC TCC CTT Eventi possibili = 6 eventi favorevoli (CC, CCC) = 3 probabilità = 3 /6 = 0.5

Es.dado lanciato 60 volte : uscita 4 = 15 volte : x = 15 Numero successi (frequenza assoluta): numero di esiti positivi su totale prove :x Es.dado lanciato 60 volte : uscita 4 = 15 volte : x = 15 Frequenza relativa = numero successi / numero prove f = x / n Lanciando un dado 10000 volte, numero di volte prevedibile che esca 4 ? F = x / n = 15 / 60 = ¼ = 0.25 Lancio singolo: eventi possibili = 6 evento favorevole a 4 = 1 P3 = 1 / 6 = 0.1666 4 0.1666/ 1 = x /10000 x = 1666 È prevedibile che aumentando il numero delle prove aumenti in proporzione anche il numero degli esiti positivi in funzione della probabilità dell’evento

Legge dei grandi numeri (casuale):la frequenza con la quale si presenta un evento si avvicina al valore della sua probabilità in funzione del numero di prove: tali valori sono tanto più simili quanto maggiore è il numero delle prove eseguite Fx = Px * n Il rapporto tra il numero dei successi e il numero di prove va aumentando con il numero delle prove e il rapporto tra successi e prove si avvicina al valore della probabilità

Esemplificazione lancio di un dado, con excel e numeri casuali tra 1 e 6 Per un lancio la probabilità che esca un numero tra 1 e 6 risulta 1/6 = 0.166

Simulazione con 499 lanci: ricerca esiti e frequenza sul totale

Ricerca su totale 499 e parziale 399 Osservare come la frequenza si approssima alla probabilià (0.166) con l’aumentare delle prove eseguite 1, 99, 199, 299, 399, 499

Ricerca su parziale 299 e 199 Osservare come la frequenza si approssima alla probabilià (0.166) con l’aumentare delle prove eseguite 1, 99, 199, 299, 399, 499

Ricerca su parziale 99 e 1 Osservare come la frequenza si approssima alla probabilià (0.166) con l’aumentare delle prove eseguite 1, 99, 199, 299, 399, 499

Simulazione lanci successivi , sempre 499 ricerca su totale Osservare come in ogni prova (499 lanci) cambiano le frequenze pur rimanendo sempre abbastanza simili alla probabilità (0.166)

Simulazione lanci successivi , sempre 499 ricerca su totale Osservare come in ogni prova (499 lanci) cambiano le frequenze pur rimanendo sempre abbastanza simili alla probabilità (0.166)

Simulazione lanci successivi , sempre 499 ricerca su totale Osservare come in ogni prova (499 lanci) cambiano le frequenze pur rimanendo sempre abbastanza simili alla probabilità (0.166)

Simulazione lanci successivi , sempre 499 ricerca su totale Osservare come in ogni prova (499 lanci) cambiano le frequenze pur rimanendo sempre abbastanza simili alla probabilità (0.166)

Osservare rapporto tra numero di prove , frequenza e probabilità