Lez. 3 - Gli Indici di VARIABILITA’

Slides:



Advertisements
Presentazioni simili
- le Medie la Moda la Mediana
Advertisements

Le distribuzioni di probabilità continue
TAV.1 Foto n.1 Foto n.2 SCALINATA DI ACCESSO ALL’EREMO DI SANTA CATERINA DEL SASSO DALLA CORTE DELLE CASCINE DEL QUIQUIO Foto n.3 Foto n.4.
____________________
1 Pregnana Milanese Assessorato alle Risorse Economiche Bilancio Preventivo P R O P O S T A.
LA VARIABILITA’ IV lezione di Statistica Medica.
Distribuzione Normale o Curva di Gauss
COORDINATE POLARI Sia P ha coordinate cartesiane
Frontespizio Economia Monetaria Anno Accademico
La scelta del paniere preferito
1 la competenza alfabetica della popolazione italiana CEDE distribuzione percentuale per livelli.
“Teoria e metodi della ricerca sociale e organizzativa”
Variabilità Variabilità: inevitabile fluttuazione dei fenomeni naturali, fisici, sociali ecc le indicazioni fornite dalle misure di tendenza centrale (media.
Sintesi dei dati La sintesi dei dati comporta una perdita di informazioni, deve quindi essere privilegiato l’indice di sintesi che minimizza la perdita.
C – Indici di Asimmetria e Curtosi
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5
Prove oggettive Moda Gamma Scarto quadratico medio Scarto quadratico medio Analisi delle risposte Valutazione tendenza centrale omogeneità Interventi.
Statistica descrittiva
Inferenza statistica per un singolo campione
Le Variabili Casuali Corso di Teoria dell’Inferenza Statistica 1
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Esercizi x1=m-ts x2=m+ts
La distribuzione normale e normale standardizzata
Introduzione alla statistica per la ricerca Lezione I
COSA VUOL DIRE FARE STATISTICA
8. Reti di Code Nella maggior parte dei processi produttivi risulta troppo restrittivo considerare una sola risorsa. Esempio: linea tandem arrivi 1 v.
Canale A. Prof.Ciapetti AA2003/04
Ufficio Studi UNIONCAMERE TOSCANA 1 Presentazione di Riccardo Perugi Ufficio Studi UNIONCAMERE TOSCANA Firenze, 19 dicembre 2000.
Esercizi x1=m-ts x2=m+ts
Misure di dispersione Giovanni Filatrella
Lezione 8 Numerosità del campione
Num / 36 Lezione 9 Numerosità del campione.
Lezione 4 Probabilità.
Pedagogia sperimentale
19 Lezione 21/5/04 Composizione dell'immagine 1 COMPOSIZIONE DELLIMMAGINE.
Luciano giromini – la misura in psicologia, 2009 database e distribuzioni - misure di sintesi - misure di variabilità descrizione dei dati:
METODI E CONTROLLI STATISTICI DI PROCESSO
1 Negozi Nuove idee realizzate per. 2 Negozi 3 4.
Scheda Ente Ente Privato Ente Pubblico. 2ROL - Richieste On Line.
Statistica descrittiva
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3 Le distribuzioni di frequenza e le misure di sintesi univariate.
TRATTAMENTO, ANALISI E INTERPRETAZIONE DEI DATI
1 Guida per linsegnamento nei corsi per il conseguimento del CERTIFICATO DI IDONEITÀ ALLA GUIDA DEL CICLOMOTORE.
Bando Arti Sceniche. Per poter procedere è indispensabile aprire il testo del Bando 2ROL - Richieste On Line.
LE SAI LE TABELLINE? Mettiti alla prova!.
Un trucchetto di Moltiplicazione per il calcolo mentale
LA CIRCONFERENZA.
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
1Piero Scotto - C14. Finalità del corso Programma Materiale Requisiti Spendibilità 2Piero Scotto - C14.
Simone Mosca & Daniele Zucchini 4Bi.
La Variabilità e La Concentrazione
Lez. 3 - Gli Indici di VARIABILITA’
Gli Indici di VARIABILITA’
Statistica La statistica è
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
Gli indici di dispersione
IL GIOCO DEL PORTIERE CASISTICA. Caso n. 1 Il portiere nella seguente azione NON commette infrazioni.
Strumenti statistici in Excell
Corso di Analisi Statistica per le Imprese Indici di variabilita’ ed eterogeneita’ Prof. L. Neri a.a
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
Metodologia della ricerca e analisi dei dati in (psico)linguistica 23 Giugno 2015 Statistica descrittiva
STATISTICHE DESCRITTIVE
TRATTAMENTO STATISTICO DEI DATI ANALITICI
STATISTICA P IA F ONDAZIONE DI C ULTO E R ELIGIONE C ARD. G. P ANICO Azienda Ospedaliera CORSO DI LAUREA IN INFERMIERISTICA Sr. Margherita Bramato.
1 LA STATISTICA DESCRITTIVA Docente prof.sa Laura Mercuri.
1 Statistica descrittiva 2. Sintetizzare i dati con degli indici Come descrivere una variabile in un insieme di osservazioni 1. Utilizzare rappresentazioni.
Gli Indici di VARIABILITA’
Transcript della presentazione:

Lez. 3 - Gli Indici di VARIABILITA’ Elementi di Statistica descrittiva Lez. 3 - Gli Indici di VARIABILITA’ - Campo di variazione Scarto dalla media Varianza Scarto quadratico medio Coefficiente di variazione

Indici di Variabilità I valori medi sono indici importanti per la descrizione sintetica di un fenomeno statistico Hanno però il limite di non darci alcuna informazione sulla distribuzione dei dati

In tutte e tre le prove la media è 6,25 Esempio In tre differenti prove di matematica 4 studenti hanno riportato le seguenti valutazioni In tutte e tre le prove la media è 6,25 ma i dati sono chiaramente distribuiti in modo diverso

Diagramma di distribuzione delle tre prove

nel caso della 1a prova e 2a prova sarà opportuno fare un recupero per alcuni studenti nel caso della 3a prova l’insegnante può ritenere che gli obiettivi siano stati raggiunti dalla classe, anche se ad un livello solo sufficiente

In statistica è possibile valutare in modo sintetico la distribuzione dei dati mediante gli indici di variabilità (o dispersione) Vedremo i seguenti indici Campo di variazione (Range) Scarto medio dalla media Varianza e scarto quadratico medio Coefficiente di variazione

Campo variazione = x max – x min Campo di variazione E’ il più semplice degli indici di variazione: Si calcola facendo la differenza tra il dato più grande e il dato più piccolo Campo variazione = x max – x min Rappresenta l’ampiezza dell’intervallo dei dati

Xmax = 9; Xmin = 3 Range = 9 – 3 = 6 Esempio Consideriamo le valutazioni della prima prova Xmax = 9; Xmin = 3 Range = 9 – 3 = 6

Calcoliamo il Range per tutte le tre prove Range 1a prova = 6  dati più dispersi, risultati più eterogenei Range 3a prova = 1  dati più concentrati, risultati più omogenei Range 2a prova = Range 1a prova = 6 Stessa Distribuzione?

Vediamo graficamente

ma distribuzione 1a prova  Distribuzione 2a prova Osservazioni: 1. Il campo di variazione dà informazioni sulla distribuzione dei dati: più R è piccolo più i dati sono concentrati; più R è grande più i dati sono dispersi. 2. R è espresso nella stessa unità di misura dei dati 3. Tuttavia R tiene conto solo dei dati estremi della distribuzione e non di tutti i dati, pertanto distribuzioni diverse ma con gli stessi valori estremi hanno range uguali Es. Range 1aprova = Range 2a prova. ma distribuzione 1a prova  Distribuzione 2a prova

Scarto medio dalla media aritmetica Un altro modo per calcolare la variabilità dei dati (tenendo conto di tutti i dati) consiste nel calcolare la distanza di tutti i dati dalla media e fare la media aritmetica di tali distanze Scarto medio = Distanza media dei dati dalla media

Consideriamo le valutazioni della prima prova Esempio Consideriamo le valutazioni della prima prova x1 =  3 – 6,25  = 3,25; x2 =  5 – 6,25  = 1,25; x3 =  8 – 6,25  = 1,75; x4 =  9 – 6,25  = 2,75; Sm = 3,25 + 1,25 + 1,75 + 2,75 = 2,25 4

Calcoliamo lo Scarto medio per tutte le tre prove Scarto 1a prova = 2,25  dati più dispersi, risultati più eterogenei Scarto 3a prova = 0,38  dati più concentrati, risultati più omogenei Scarto 2a pr.  Scarto 1a pr. “Le Distribuzioni Differiscono”

Diagramma degli scarti dalla media

Osservazioni: 1. Lo scarto medio dalla media dà informazioni sulla distribuzione dei dati: più SM è piccolo più i dati sono concentrati; più SM è grande più i dati sono dispersi. 2. SM è espresso nella stessa unità di misura dei dati 3. Non ha l'inconveniente del “Campo di variazione” in quanto SM tiene conto di tutti i dati della distribuzione

Varianza e Scarto quadratico medio Sono gli indici di variabilità più utilizzati, e tengono conto della distribuzione di tutti i dati. Varianza Rappresenta la media aritmetica dei quadrati delle distanze dei dati dalla media M

Consideriamo le valutazioni della prima prova Esempio - Varianza Consideriamo le valutazioni della prima prova (x1)2 = (3 – 6,25 )2 = 10,5625; (x2)2 = (5 – 6,25 )2 = 1,5625; (x3)2 = (8 – 6,25 )2 = 3,0625; (x4)2 = (9 – 6,25 )2 = 7,5625; 2 = 10,5625+1,5625+3,0625+7,5625 = 5,6875 4

Calcoliamo la Varianza per tutte le tre prove Varianza 1aprova = 5,69  dati più dispersi, risultati più eterogenei Varianza 3a prova = 0,19  dati più concentrati, risultati più omogenei Varianza 2a pr.  Varianza 1a pr “Le Distribuzioni Differiscono”

Scarto quadratico medio o Deviazione standard È uguale alla radice quadrata della varianza

Esempio - Scarto quadratico medio Riprendiamo le valutazioni della prima prova

Calcoliamo lo Scarto quadratico medio per tutte le prove Scarto q. 1aprova = 2,38  dati più dispersi, risultati più eterogenei Scarto q. 3aprova = 0,43  dati più concentrati, risultati più omogenei Scarto q. 2a pr.  Scarto q. 1a pr “Le Distribuzioni Differiscono”

Osservazioni: 1. La varianza 2 e lo scarto quadratico medio  danno informazioni sulla distribuzione dei dati: più 2 e  sono piccoli più i dati sono concentrati; più 2 e  sono grandi più i dati sono dispersi. 2. Entrambi gli indici tengono conto di tutti i dati della distribuzione

3. Entrambi si basano sulla proprietà della media per cui la somma dei quadrati degli scarti dalla media è minima 4. La varianza è espressa mediante il quadrato dell’unità di misura dei dati 5. Lo scarto quadratico nella stessa unità di misura dei dati e pertanto viene preferito alla varianza

Il coefficiente di variazione CV Il CV è una misura relativa di dispersione (le precedenti sono misure assolute) ed è una grandezza adimensionale. E’ particolarmente utile quando si devono confrontare le distribuzioni di due gruppi con medie molto diverse o con dati espressi in scale differenti (es. confronto tra variazione del peso e variazione dell’altezza).

In natura il coeff. di variazione tende a rimanere costante per ogni fenomeno: i valori normalmente variano dal 5% al 15% Se i valori di CV sono esterni a quelli indicati o si è in presenza di errori di rilevazione, oppure il fenomeno presenta aspetti particolari. se CV è molto basso (2 – 3 %) bisogna sospettare l’esistenza di fattori limitanti la variabilità, se CV è molto alto (intorno al 40% o più) è molto probabile l’esistenza di fattori che aumentano la variabilità

Calcoliamo il Coeff. di variazione delle tre prove CV 1a prova = 38,16%  dati più dispersi, risultati più eterogenei CV 3a prova = 6,93%  dati più concentrati, risultati più omogenei CV 2a pr.  CV 1a pr  “Le Distribuzioni Differiscono”

Le misure di Forma Noi esamineremo: l’asimmetria la curtosi Sono indici sintetici utilizzati per evidenziare particolarità nella forma della distribuzione. Noi esamineremo: l’asimmetria la curtosi

Asimmetria Una distribuzione è simmetrica quando la sua curva di frequenza presenta un asse di simmetria In una distribuzione simmetrica media, mediana e moda sono coincidenti. media = mediana = moda In una distribuzione asimmetrica media, mediana e moda non sono più coincidenti e proprio la differenza (distanza) tra la media e la moda può essere considerata una misura della asimmetria

Sono state proposte diverse misure dell’ asimmetria, per esempio le più semplici sono: Dette rispettivamente: primo e secondo coeff. di asimmetria di Pearson Un altro coeff di asimmetria è il Coeff. di asimmetria (di Fisher) = scarto quadratico medio Se a = 0 distribuzione simmetrica Se a > 0 asimmetria destra Se a < 0 asimmetria sinistra

Asimmetria positiva (as. Destra) La distribuzione è asimmetrica quando non presenta nessun asse di simmetria. Si ha un’asimmetria positiva o destra quando il ramo destro della curva è più lungo di quello sinistro media=63,65 moda = 48 mediana =58 In questo caso si ha: moda < mediana < media

Asimmetria negativa (as. Sinistra) Si ha un’asimmetria negativa o sinistra quando il ramo sinistro della curva è più lungo di quello destro media = 85,24 moda = 100 mediana = 90 In questo caso si ha: media < mediana < moda

Curtosi Se una distribuzione è simmetrica o quasi simmetrica allora può esser più o meno appuntita o più o meno appiattita rispetto alla distribuzione normale (o di Gauss) Se la curva è più appuntita si dice curva Leptocurtica più appiattita si dice curva Platicurtica Coeff. di curtosi di Pearson  = scarto quadratico medio 0  K < + inf Se K = 3 distribuzione normale se K > 3 curva leptocurtica Se K < 3 curva platicurtica.

Curtosi leptocurtosi K = 8,57 platicurtosi K = 2,8 curva normale K = 3

Curtosi Spesso il coeff. di curtosi viene indicato con b2 che, come visto, nel caso della distribuzione normale è = 3 pertanto, talvolta, la curtosi viene indicata con (b2 – 3) Allora: se la distribuzione è normale (b2 – 3 ) = 0 se la distribuzione è leptocurtica (b2 – 3 ) > 0 se la distribuzione è platicurtica (b2 – 3 ) < 0

Esercizio 5 Il numero dei visitatori di un museo nei diversi giorni delle 4 settimane di ottobre sono stati i seguenti: 1^ sett.: 12, 15, 14, 10, 15, 13, 20 2^ sett.: 3, 23, 5, 6, 31, 13, 7 3^ sett.: 10, 12, 10, 11, 12, 15, 11 4^ sett.: 5, 7, 8, 4, 21, 33, 40 Inserisci i dati in una tabella e crea un grafico significativo. Poi calcola, per ogni settimana, la media, il campo di variazione, lo scarto semplice medio e la deviazione standard. Scrivi poi le tue osservazioni/conclusioni.

Fine Lezione