Di Andrea Tellini cl. 4^H a.s

Slides:



Advertisements
Presentazioni simili
Di Andrea TELLINI e Macro ZOCCOLAN – 4H. Lesperimento consiste in 2 parti: Trovare la legge con cui varia lintensità luminosa trasmessa in funzione dello.
Advertisements

Facciamo Luce Il Cuneo D'Aria.
Le onde elettromagnetiche
OTTICA delle LENTI Presentazione multimediale classe IV IB A.S. 2002/03 Prof. Loredana Villa Per molti strumenti ottici (il cannocchiale, il binocolo,
Onde elettromagnetiche nel vuoto
Fenomeni Ondulatori una perturbazione e’ la variazione rispetto alla configurazione di equilibrio di una o piu’ grandezze caratteristiche di un sistema.
a = angolo diedro o i1 d = deviazione i2 r1 r2 dd i1 = i2 D
Principali processi nell’interazione luce materia
Fisica 2 18° lezione.
Onde 2 7 dicembre 2012 Principio di Huygens
La polarizzazione della luce
La Luce.
Il Suono Il suono è una perturbazione longitudinale prodotta da un corpo che vibra con una certa frequenza. Le corde vocali di una persona, le corde di.
Pierangelo Degano, Emanuel Castellarin, Laura Passaponti
Il quadrifoglio ovvero quando girano le lampadine Una lampadina può essere considerata sorgente puntiforme isotropa? Obiettivi -indagare il fenomeno -ipotizzare.
L’intensità luminosa diminuisce con la distanza… ma come?
Lezione 4) L’Equazione Iconale e la propagazione delle onde in mezzi disomogenei.
Prova di recupero corso di Fisica 4/05/2004 Parte A
Prova di esame di Fisica 4 - A.A. 2004/5 I prova in itinere 12/4/05 COGNOME…………..……………………… NOME. …………… ……… ) (7 punti) Un raggio di luce.
Corso di Fisica B, C.S.Chimica, A.A
Luce ed onde elettromagnetiche
INTENSITA SU UNO SCHERMO IN UNA INTERFERENZA TRA DUE SORGENTI PUNTIFORMI Alberto Martini.
Elettricità e magnetismo
Rotazione di un corpo rigido attorno ad un asse fisso
Fenomeni di interferenza. Sorgenti luminose coerenti
Esempio: Un sottile fascio luminoso monocromatico di 0.
Combinazioni di lenti Le proprietà della lente sottile sono fondamentali per la comprensione di sistemi ottici rifrattivi anche complessi. Oggi il calcolo.
Dispersione della luce
Il reticolo di diffrazione
Luce Cremaschini Claudio D’Arpa Maria Concetta Gallone Giovanni Jordan Julia Macchia Davide Parziale Gianluca Punzi Danila De Rose Francesco.
Gli spunti dell’ottica nella fisica moderna
LUCE Serafino Convertini Alessandra Forcina Paolo De Paolis
LA POLARIZZAZIONE.
2° Turno – Dal 9 all’11 luglio 2012
Interferenza L’interferenza Il principio di Huygens
FENOMENI INTERFERENZIALI
ONDE ELETTROMAGNETICHE
RIFLESSIONE E RIFRAZIONE DELLE ONDE E.M.
FENOMENI DIFFRATTIVI •Il principio di Huygens;
Le onde elettromagnetiche sono costituite da un campo elettrico e un campo magnetico mutuamente perpendicolari che oscillano in fase fra loro perpendicolarmente.
Polarimetria Docente di riferimento: Dott. Alfonso Zoleo
1. Condizioni di raccordo alle discontinuità 2. Riflessione e rifrazione. La legge di Snell. 3. La riflessione totale 5. Effetti della dispersione: la.
OTTICA Ottica geometrica Ottica fisica Piano Lauree Scientifiche
La polarizzazione e le lenti polarizzate
La luce Gruppo 1: Maurilio Fava, Chiara Maranò, Marina Pellegrino, Michela Ponzo. Gruppo 2: Amelia Caretto, Giorgia De Virgiliis, Elisa.
IV prova di laboratorio: verifica della legge dei punti coniugati e delle leggi di Snell Set-up sperimentale.
Onde 10. I raggi luminosi (I).
Vettori dello spazio bidimensionale (R 2)
OTTICA delle LENTI Per molti strumenti ottici (il cannocchiale, il binocolo, la macchina fotografica, i moderni telescopi, ecc.) l'elemento base è la lente.
Polarizzazione della luce
OTTICA Ottica geometrica Ottica fisica Progetto Lauree Scientifiche
ELETTROMAGNETICHE E LA LUCE
Modello classico ad onda sinusoidale
Diffusione depolarizzata della luce in colloidi anisotropi
Alcune esperienze di laboratorio sull’ottica geometrica
Esercizi numerici 1) Secondo le norme dell’Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna per l’esposizione ai campi a radiofrequenza, il.
Ottica geometrica Ottica.
Prova di esame di Fisica 4 - A.A. 2006/7 I prova in itinere 30/3/07 COGNOME…………..……………………… NOME. …………… ……… ) Un raggio di luce monocromatica.
Prova di recupero corso di Fisica 4 8/05/2006 I parte
LEZIONI DI OTTICA.
Prova di esame del corso di Fisica 4 A.A. 2004/5 I appello di Settembre del 13/9/05 NOME………….....…. COGNOME…………… ……… ) Un raggio di.
I0 n I Prova in itinere corso di Fisica 4 A.A. 2001/2
Prova di esame di Fisica 4 - A.A. 2004/5 I prova in itinere 5/4/05 COGNOME…………..……………………… NOME. …………… ……… ) Due prismi di vetro sono accoppiati.
3) (6 punti) Si consideri la situazione in figura con il sole allo Zenit (incidenza normale) sulla superficie del mare. Si assuma per l’acqua l’indice.
LE ONDE.
1 Lezione XIII-b Avviare la presentazione col tasto “Invio”
Test di Fisica Soluzioni.
Ottica geometrica. I raggi di luce Un raggio di luce è un fascio molto ristretto che può essere approssimato da una linea sottile. In un mezzo omogeneo,
Polarizzazione della luce
A cura di: Carlo Andrea Tortorelli Edoardo Peluso Alessio Pirolo Ludovica Luciani Federica Salvati Daniele Labella.
Transcript della presentazione:

Di Andrea Tellini cl. 4^H a.s. 2003-2004 LA POLARIZZAZIONE Di Andrea Tellini cl. 4^H a.s. 2003-2004

Alcuni strani fenomeni… Nell’esperimento sulla trasmissione della luce abbiamo usato anche delle lenti polaroid e avevamo notato che c’era un’anomalia: non tutti i punti seguivano la legge esponenziale che descrive il fenomeno per tutti gli altri materiali. Ecco cosa avevamo ottenuto con questo particolare tipo di lenti.

Dati raccolti e rielaborati numero lenti intensità relativa   96 ±1 I0 1 22,7 ±0,3 I1 2 9,6 ±0,2 I2 3 3,7 ±0,1 I3 Conclusioni derivanti dall’analisi dei dati: Non viene rispettata la legge (infatti il rapporto tra punti successivi del grafico non è costante Tale rapporto ( ) è costante entro gli errori sperimentali solo per n>0, invece, sempre entro gli errori sperimentali, . L’azione di questo tipo di materiale (polaroid) deve essere diversa da quella degli altri.

Cosa succede allora? I polaroid compiono sulla luce un’azione detta polarizzante. In che cosa consiste? La luce, come ogni onda elettromagnetica, è trasversale (la vibrazione è perpendicolare alla direzione di propagazione). Il campo elettrico generato da quest’onda è oscilla perpendicolarmente rispetto al piano di propagazione. Se il campo magnetico viene “costretto” in qualche modo a oscillare lungo solo un piano fisso, allora la luce si dice polarizzata linearmente. Come si può ottenere la luce polarizzata? Con uno dei seguenti metodi: Assorbimento Riflessione Diffusione Birifrangenza

Polarizzazione per assorbimento È il caso dei polaroid, o comunque dei materiali che fungono da lamine polarizzatrici. I polaroid sono formati da lunghe catene idrocarburiche che vengono allineate e stirate in una direzione durante il processo di fabbricazione. La luce viene così “costretta” ad attraversare il polaroid solo parallelamente alla direzione lungo cui le catene vengono stirate. Questa direzione è detta asse di trasmissione. Osserviamo cosa succede ruotando due polaroid uno rispetto all’altro. L’intensità della luce trasmessa varia a seconda dell’angolo di rotazione tra un massimo e 0 (in questo caso, che si ottiene con una rotazione di 90°, non passa luce), con periodicità di 180°. Se però tra due lenti poste in modo che non passi luce inseriamo una terza lente, l’intensità trasmessa non è più 0. Si può quindi ipotizzare che l’intensità trasmessa vari in funzione dell’angolo con cui sono ruotati i polaroid. Cerchiamo quindi questa legge (vai alla scheda dell’esperimento) INDIETRO

Alla ricerca della legge di Malus Materiale: due lenti polaroid fissate su un sostegno rotante graduato; sorgente luminosa qualsiasi (nel nostro caso lampadina a filamento incandescente); sensore di intensità luminosa collegato al copmuter tramite interfaccia. Procedimento: allineati la sorgente di luce, i due polaroid e il sensore (la distanza di questo dalla sorgente deve essere mantenuta costante, altrimenti va considerata anche la legge dell’inverso quadro della distanza), si effettuano le misure dell’intensità trasmessa ruotando man mano solo una polaroid. Decidiamo di attribuire all’angolo per cui si ha l’intensità massima il valore 0 (in questo caso gli assi di trasmissione sono paralleli). Dati raccolti: angolo in gradi Intensità 6,4 10 5,9 20 5,7 30 5,2 40 4,3 50 3 60 2,4 70 1,9 80 1,7 90 1,6 Elaborazione dati: tracciamo il grafico dell’intensità in funzione dell’angolo relativo di inclinazione tra gli assi di trasmissione. Vai al grafico

Ecco il grafico dell’intensità in funzione dell’angolo. Si può ipotizzare un andamento cosinusoidale. Tracciamo quindi il grafico dell’intensità in funzione del coseno dell’angolo. Ecco il grafico dell’intensità in funzione del coseno dell’angolo. Si può ipotizzare un andamento parabolico. Tracciamo quindi il grafico dell’intensità in funzione del quadrato del coseno dell’angolo. Ecco il grafico dell’intensità in funzione del quadrato del coseno dell’angolo. La correlazione è ora, nell’ambito degli errori sperimentali, lineare. Vediamo cosa possiamo concludere

Le ipotesi sono state confermate nell’ambito degli errori sperimentali Le ipotesi sono state confermate nell’ambito degli errori sperimentali. La funzione ha periodicità di π, dato che conferma così l’analisi fenomenica. La legge che descrive il fenomeno può essere espressa secodo la forma dove I0 è l’intensità che investe il polaroid, mentre α l’angolo relativo tra gli assi di trasmissione. Tale legge è detta legge di Malus. L’angolo può essere solo relativo, perché avendo a disposizione solo un polaroid (detto polarizzatore) non è determinabile l’asse di trasmissione in modo assoluto. È necessario infatti disporre di un secondo polariod (analizzatore) per determinarlo. Proponiamo ora l’interpretazione di tale legge.

Abbiamo già detto che l’onda elettromagnetica luminosa presenta un campo elettrico che vibra in un piano perpendicolare alla direzione di propagazione dell’onda. Il vettore campo elettrico può quindi essere scomposto in due componenti, come nella seguente figura: Nella figura l’asse di propagazione dell’onda è quello z (non disegnato), perpendicolare allo schermo. Dopo la polarizzazione solo una delle componenti del vettore campo elettrico rimane, per esempio Ex, cioè E·cos α. L’intensità di un’onda dipende dal quadrato dell’ampiezza. Nell’equazione di un’onda elettromagnetica l’ampiezza viene sostituita con il vettore campo elettrico, quindi l’intensità è proporzionale al quadrato del vettore campo elettrico. Quindi I=k·E2=k·E02·cos2 α, da cui la diretta proporzionalità tra l’intensità e il quadrato dell’angolo. INDIETRO

Polarizzazione per riflessione Se si guarda la luce riflessa da un davanzale o dal pavimento a grandi angoli tramite una lente polaroid, si vede variare l’intensità della luce trasmessa. Ciò significa che la luce è perlomeno parzialmente polarizzata. Vediamo cosa succede... Abbiamo già detto che il campo elettrico dell’onda luminosa oscilla sugli infiniti piani perpendicolari alla direzione di propagazione. Il vettore campo elettrico può essere scomposto in due componenti: una parallela al piano identificato da raggio incidente, raggio riflesso e normale al piano di incidenza e una perpendicolare a questo piano. Dopo la riflessione la componente parallela è ridotta (anche la luce rifratta è polarizzata: in questo caso però si riduce la componente perpendicolare del campo elettrico). Esiste un angolo per cui la componente parallela riflessa è nulla. Tale angolo è detto angolo di Brewster (qui lo indicheremo come θB e verifica le seguenti condizioni: θincidenza=θB θrifratto+θincidenza=90° Quest’ultima relazione è difficile da spiegare, essendo necessarie nozioni di magnetismo. SEGUE

Per la legge di Schnell-Cartesio della rifrazione si ha: Applicando le proprietà dell’angolo di Brewser sopra elencate a tale relazione si ottiene: Abbiamo anche realizzato un esperimento per determinare l’angolo di Brewster per il vetro (vai alla scheda dell’esperimento). INDIETRO

Esperimento sull’angolo di Brewster Materiale: sorgente di luce non polarizzata (nel nostro caso lampadina a filamento), la cui luce è collimata con degli appositi strumenti ottici; una piccola lastra di vetro (per esempio vetrino da microscopio); goniometro; sensori di intensità luminosa, una lente polaroid. Montaggio del materiale: far convergere un sottile pennello di luce sulla superficie riflettente (vetro) attraverso opportuni strumenti ottici (diaframma) posizionata su un goniometro e mettere un sensore di intensità luminosa in modo da intercettare il raggio (o meglio il pennello) riflesso. Porre quindi la lente polaroid tra la superficie riflettente e il sensore di intensità. Procedimento: per ogni angolo di incidenza effettuare la misurazione dell’intensità trasmessa dal polaroid, ruotando questo di almeno 180°. Cambiare quindi l’angolo di incidenza ed effettuare nuovamente la misura. Elaborazione dati: essendo la luce riflessa parzialmente polarizzata, l’intensità trasmessa varia al variare dell’angolo di rotazione del polaroid. Indichiamo con R il grado di polarizzazione della luce definito come dove Imax è l’intensità massima trasmessa e Imin quella minima. Riportiamo in un grafico i risultati ottenuti.

Conclusioni: l’angolo di Brewster per il vetro usato è compreso tra 55° e 60°, essendo il grado di polarizzazione relativo pari al 100%. Tale dato è compatibile con quelli forniti dalla letteratura (circa 57° per il vetro comune). La precisione dell’esperimento non può essere migliorata data la limitata precisione del sensore di intensità. INDIETRO

Polarizzazione per diffusione Spiegare il motivo per cui la luce diffusa è polarizzata è complicato, perché richiede nozioni complesse di elettromagnetismo. Accontentiamoci allora di alcune osservazioni. Analizzando con un polaroid la luce emessa direttamente il sole vediamo che non è polarizzata perché ruotando il polaroid l’intensità trasmessa non varia. Ruotiamoci ora di 90° e analizziamo la luce diffusa: questa è invece polarizzata parzialmente (infatti l’intensità trasmessa non è mai nulla. Lo stesso fenomeno è sperimentabile osservando, sempre perpendicolarmente rispetto alla direzione di propagazione, la luce diffusa da un bicchiere contenente una soluzione di acqua e zucchero INDIETRO

Polarizzazione per birifrangenza Esistono in natura dei materiali anisotropi, ovvero il cui comportamento rispetto a certi fenomeni varia a seconda della direzione del materiale. Per esempio in alcuni materiali (quali la calcite o lo spato d’Islanda) la velocità della luce che lo attraversa non è uguale per tutte e tre le direzioni spaziali. Quando un raggio luminoso incide su tali sostanze, esso può separarsi in due raggi, detti ordinario (quello che segue la legge della rifrazione di Schnell-Cartesio) e straordinario (quello che non segue tale legge). Esiste però una direzione per la quale i due raggi si propagano con la stessa velocità e quindi coincidono. Questa direzione è detta asse ottico del materiale. Se la luce incidente forma un angolo con l’asse ottico si formano appunto raggio ordinario e straordinario, che sono polarizzati in direzioni mutuamente perpendicolari: infatti ruotando un polaroid analizzatore viene trasmesso prima l’no e dopo l’altro raggio, precisamente ogni 90° di rotazione. INDIETRO