ERRORI L'errore è presente in ogni metodo analitico e può essere dovuto a cause diverse. L’errore può essere definito come la differenza tra il valore.

Slides:



Advertisements
Presentazioni simili
Misure ed Errori Prof Valerio CURCIO.
Advertisements

Test delle ipotesi Il test consiste nel formulare una ipotesi (ipotesi nulla) e nel verificare se con i dati a disposizione è possibile rifiutarla o no.
Come possono essere classificati?
Alcuni aspetti chiave e preliminari:
Proprietà degli stimatori
Corso di Laurea in Scienze Chimiche Corso di Laurea in Tecnologie Chimiche P.A.R. Laboratorio di Chimica Generale e Inorganica 1 Lezione 2 – 3 ottobre.
Impostare e scrivere una relazione.
La sperimentazione clinica
Introduzione alle misure strumentali
Marina Cobal - Dipt.di Fisica - Universita' di Udine
Affidabilita` di un’analisi. Specificita`:
VARIABILITA’ ANALITICA, ERRORI DI MISURA, SICUREZZA DI QUALITA’
CAMPIONAMENTO Un momento fondamentale di una analisi è rappresentato dal campionamento, generalmente si pensa che i campioni da analizzare siano omogenei.
Elementi di statistica Elementi di statistica M. Dreucci Masterclasses LNF Elementi di statistica M. Dreucci.
Progetto Pilota 2 Lettura e interpretazione dei risultati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5
Misura Misura diretta Confronto diretto con l’unita’ di misura e/o multipli e sottomultipli Misura indiretta La grandezza da misurare e’ legata da una.
CONFRONTO TRA DUE MEDIE:
Innanzitutto divertiamoci
Efisio Antonio Coppola
CORSO DI MODELLI DI SISTEMI BIOLOGICI LAUREA IN INGEGNERIA CLINICA E BIOMEDICA.
STATISTICA a.a METODO DEI MINIMI QUADRATI REGRESSIONE
Cenni di teoria degli errori
Emivita Fisica (T1/2) e Vita Media (T)
LERRORE IN LABORATORIO GROSSOLANO (per negligenza e/o imperizia) SISTEMATICO (accuratezza) CASUALE (precisione)
Propagazione degli errori
Quale valore dobbiamo assumere come misura di una grandezza?
Misurare una grandezza fisica
Appunti del Corso di fisica per istituti professionali
Grandezze e Misure.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3 Le distribuzioni di frequenza e le misure di sintesi univariate.
CAMPIONAMENTO tecniche, errori, strumentazione.
Le distribuzioni campionarie
Tecniche descrittive Utilizzano modelli matematici per semplificare le relazioni fra le variabili in studio Il fine è la descrizione semplificata del fenomeno.
Statistica Che cos’è?.
Unità 6 Test parametrici e non parametrici Test per la verifica della normalità Funzione di ripartizione.
Tutte le grandezze fisiche si dividono in
TRATTAMENTO DEI DATI ANALITICI
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Introduzione alla fisica
Titolazioni e termini usati nelle titolazioni Calcoli volumetrici
Titolazioni di neutralizzazione
Titolazioni e termini usati nelle titolazioni Calcoli volumetrici
DIPARTIMENTO DI CHIMICA G. CIAMICIAN – CHIMICA ANALITICA STRUMENTALE CORSO DI LAUREA IN FARMACIA – CHIMICA ANALITICA – CHIMICA ANALITICA STRUMENTALE Titolazioni.
L’ERRORE NELL’ANALISI QUANTITATIVA
Le misure sono osservazioni quantitative
Grandezze e Misure
Lezione B.10 Regressione e inferenza: il modello lineare
Misure ed Errori.
Un insieme limitato di misure permette di calcolare soltanto i valori di media e deviazione standard del campione, ed s. E’ però possibile valutare.
Controllo di qualità dei processi e collaudo
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Elementi di statistica Le cifre significative
ELEMENTI DI STATISTICA
Corso di Elementi di Chimica Generale
Scelta del metodo analitico:
TRATTAMENTO STATISTICO DEI DATI ANALITICI
Accademia europea dei pazienti sull'innovazione terapeutica Lo scopo e i fondamenti della statistica negli studi clinici.
STATISTICA P IA F ONDAZIONE DI C ULTO E R ELIGIONE C ARD. G. P ANICO Azienda Ospedaliera CORSO DI LAUREA IN INFERMIERISTICA Sr. Margherita Bramato.
Problemi analitici quantitativi I metodi chimico-analitici strumentali hanno lo scopo di quantificare o di determinare proprietà chimico-fisiche di uno.
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
Statistica di Base per le Scienze Pediatriche luigi greco D.C.H, M.D., M.Sc.M.C.H., Ph.D. Dipartimento di Pediatria UniFEDERICOII.
MetrologiaVittore Carassiti - INFN FE1 METROLOGIA.
Gli strumenti di misura
Corso PAS Misure, strumenti ed Errori di misura Didattica del Laboratorio di Fisica F. Garufi 2014.
Trattamento dei dati sperimentali
Transcript della presentazione:

ERRORI L'errore è presente in ogni metodo analitico e può essere dovuto a cause diverse. L’errore può essere definito come la differenza tra il valore ottenuto ed il valore vero. I risultati delle misure vanno espressi in modo obiettivo, cioè in modo da poter ripetere l'esperimento e verificare così se essi rispondono al vero oppure no. Infatti, i dati di misura sono affetti da una certa variabilità collegata alla metodologia sperimentale adottata. Senza l'indicazione di questa variabilità, i risultati di misura non sono completi e spesso sono inutilizzabili.

Possiamo suddividere gli errori in diverse categorie: Errori strumentali - sono dovuti principalmente alle seguenti cause: a) Bilancia con bracci ineguali, sensibilità insufficiente, pesi non tarati. b) Vetreria non esattamente tarata. c) Presenza di materiali estranei per attacco chimico dei recipienti di vetro, di porcellana ecc.. d) Presenza nei reagenti di sostanze interferenti.

Errori operativi - Dipendono dalla manualità e dall’analista: a) Contaminazione e perdita di solidi e liquidi, prelievo incompleto e lavaggio scarso o eccessivo di precipitati. b) Uso di recipienti non appropriati. c) Tempo e temperatura di riscaldamento non adeguati. d) Errori di calcolo. e) Uso di campioni non rappresentativi.

Errori personali - Dipendono dalla predisposizione personale all’analisi: a) Incapacità a valutare esattamente una variazione di colore. b) Incapacità a leggere correttamente un volume. c) Tendenza ad uniformare la lettura di una scala alle letture precedenti.

Errori di metodo - Sono legati al procedimento e non sono eliminabili: a) Solubilizzazione di un precipitato nelle acque madri o di lavaggio. b) Incompletezza di una reazione. c) Igroscopicità delle sostanze pesate. d) Reazioni collaterali.

L'errore, E, esprime la differenza tra il valore sperimentale ottenuto R e quello vero, ; quindi E = R -  ed ha un segno definito (positivo o negativo). Pertanto l’errore non ha il solito significato di sbaglio, ma è legato alle inevitabili fluttuazioni dei dati ottenuti mediante misurazioni sperimentali. Esso può essere minimizzato ma non eliminato. La relazione tra R e  è la seguente: R =  +  +  + G + ()  è l’errore sistematico totale,

 è l’errore casuale (parte di errore che può essere descritta dalle leggi della probabilità), G è l’errore grossolano, () rappresenta gli errori imprevedibili, cioè associabili a qualche parametro esterno  e dovuti a mancanza di controllo del sistema analitico. Normalmente i termini G e () possono essere considerati assenti, in quanto eliminabili per mezzo di un efficiente controllo di qualità e quindi, nel caso di una singola misura, vale la relazione:

R =  +  +  Quindi l’errore totale della singola misura è: E =  +  Gli errori vengono distinti in grossolani, sistematici e casuali. ERRORE GROSSOLANO (Sbaglio): È un errore di notevole entità non attribuibile ad imprecisione analitica o strumentale, dovuto, in genere, a disattenzione dell'operatore (confusione tra campioni, o tra reagenti, errori di calcolo, es. dividere per 10 invece che per 100, ecc.).

ERRORE SISTEMATICO: L’errore sistematico, detto anche errore determinato, è quello che, in linea di principio può venire identificato e corretto. Gli errori sistematici non sono trattabili con metodi statistici se non per confronto con altri metodi; possono essere in parte o, al limite, completamente eliminati. Un esempio potrebbe essere un piaccametro che è stato calibrato in modo non corretto. Se si presume che il pH del tampone usato per la calibrazione del piaccametro sia 7,00, mentre è in realtà 7,08, e per il resto il piaccametro funziona correttamente, tutte le letture di pH saranno inferiori di 0,08 unità rispetto al valore reale.

Quando si legge un pH di 5,60, il pH del campione è in realtà 5,68 Quando si legge un pH di 5,60, il pH del campione è in realtà 5,68. Questo è un semplice esempio di errore sistematico, che si verifica sempre nella stessa direzione e potrebbe essere individuato utilizzando un altro tampone a pH noto per controllare il piaccametro. Riassumendo, gli errori sistematici: sono dovuti a bias personale, strumentale e metodologico; sono eliminabili, almeno in teoria (sempre che gli errori casuali non siano così grandi da oscurare ogni bias); sono riconoscibili dalla mancanza di accordo tra la media di un set di valori replicati ed il valore reale o supposto tale (sempre che gli errori casuali non siano così grandi da oscurare ogni bias); influenzano l'accuratezza;

sono quantificabili mediante la differenza tra valore sperimentale della media e valore reale o supposto tale (se il valore della media è affidabile); hanno un segno definito (o sono positivi oppure sono negativi). ERRORE CASUALI: Sono causati da fattori imponderabili di varia natura imputabili alla strumentazione o all’operatore e sono rivelati dalle piccole fluttuazioni dei dati analitici, anche quando le misure sono eseguite dalla stessa persona con la massima cura e in condizioni praticamente identiche. Gli errori casuali non possono mai essere completamente eliminati. Una misura si dice "precisa" se è affetta da piccoli errori casuali.

Riassumendo, gli errori casuali Una variazione dell’umidità ambientale influenza ad esempio la quantità di vapore d’acqua assorbita durante la manipolazione e la pesata di un solido ed è causa anch'essa della non perfetta riproducibilità della determinazione. Variazioni nell'azzeramento e nella lettura dei volumi della buretta. Variazioni nell'apprezzamento dei colori di viraggio dell’indicatore nelle diverse prove eseguite. Riassumendo, gli errori casuali a) sono dovuti a irriproducibilità personali, strumentali e metodologiche; b) non sono eliminabili ma possono essere ridotti operando con cura; c) sono identificabili dalla dispersione attorno al valore medio;

e) influenzano la precisione; f) sono quantificabili mediante stima della deviazione standard, deviazione standard relativa, varianza; g) non hanno un segno definito (vengono riportati col segno ±). Poiché gli errori indeterminabili sono insiti in ogni operazione che si effettua, è consigliabile ridurre al minimo indispensabile le manipolazioni del campione da analizzare.

Precisione: bontà dell’accordo tra i risultati di misurazioni successive. Esattezza*: bontà dell’accordo tra il risultato, xi, o il valore medio dei risultati di un’analisi, ed il valore vero o supposto tale, xt.  Esatto ma non preciso  Esatto e preciso  Né esatto né preciso  Non esatto ma preciso