Metodi di solvatazione

Slides:



Advertisements
Presentazioni simili
Lavoro svolto da Antonio Ferrara Classe 2°H I.T.I.S Majorana
Advertisements

I LEGAMI CHIMICI FORZE DI NATURA ELETTROSTATICA CHE SI STABILISCONO FRA ATOMI O MOLECOLE.
ELETTROSTATICA - CARICA ELETTRICA FORZA DI COULOMB
Termodinamica Chimica
Antonio Ballarin Denti
SOLUZIONI.
Concetti di base nella chimica degli esseri viventi.
Proprietà periodiche Quale è il significato di periodicità?
4 – Forze intermolecolari
Fisica 1 Termodinamica 3a lezione.
ELETTROSTATICA.
Processi spontanei ed entropia
Solubilità e proprietà colligative
Termodinamica SISTEMA: AMBIENTE:
M. UsaiElettromagnetismo applicato allingegneria Elettrica ed Energetica_3c ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.
V(r) r rmrm εmεm r=σ Regione attrattiva Regione repulsiva V(r m )=-ε, F attr =F rep V(σ)=0, V attr =V rep.
Struttura dell'acqua liquida
analisiQualitativa_orioli(cap6)
AnalisiQualitativa_orioli(cap6)1 Soluzioni e sospensioni.
F = componente di F lungo r: Costante di proporzionalità
LA LEGGE DI COULOMB La legge di Coulomb descrive la forza che si esercita tra due cariche elettriche puntiformi, ovvero di dimensioni trascurabili rispetto.
LA LEGGE DI COULOMB La legge di Coulomb descrive la forza che si esercita tra due cariche elettriche puntiformi, ovvero di dimensioni trascurabili rispetto.
ELETTROSTATICA NELLA MATERIA
Capacità elettrica  Condensatore
Prof.ssa Silvia Recchia
Il legame nei solidi cristallini
Le soluzioni Una soluzione viene definita come un sistema omogeneo costituito da due o più componenti Il componente presente in maggiore quantità viene.
FORMAZIONE DI LEGAMI Il legame chimico si definisce quando fra due atomi esistono delle forze che danno luogo alla formazione di un aggregato. Presa r.
Le soluzioni Sono miscele omogenee di due o più sostanze (in forma di molecole, atomi, ioni) di cui quella presente in quantità maggiore è definita solvente,
IL LEGAME CHIMICO.
Biofisica fisica24ore LACQUA…la sorgente della vita.
Elettrostatica e magnetostatica nei materiali
E= energia elettronica : andamento dell’energia in funzione della distanza r tra due atomi E= energia elettronica Forze repulsive tra i due nuclei.
(a) (b) LEGAME CHIMICO ED ENERGIA
Derivate Parziali di una Funzione di più Variabili
Soluzioni Un po’ di chimica …
Università degli Studi L’Aquila Dipartimento MESVA
SOLUZIONI.
Concetti di base nella chimica degli esseri viventi
Forze intermolecolari – legame a idrogeno Scuola: Liceo Scientifico
PRIMO PRINCIPIO DELLA DINAMICA
Elettromagnetismo 1. La carica elettrica.
3. Teoria microscopica della materia
Solubilità delle sostanze.
Diagrammi di fase Se aumento T, la tensione di vapore aumenta, perché aumentano il numero di molecole allo stato gassoso. Aumentando la superficie del.
I sistemi a più componenti
PROPRIETA’ PRINCIPALI Q UANTITATIVE S TRUCTURE A CTIVITY R ELATIONSHIPS usati come descrittori in studi di.
Perché molecole discrete come I2, P4, S8 sono solide
SOLUZIONI.
Interaction energy of argon dimer. Empirical potential taken from R. A. Aziz, J. Chem. Phys., vol. 99, 4518 (1993). Lennard-Jones Potential: U(r→∞)=0 U(
Stati di aggregazione della materia
Geometria molecolare e polarità delle molecole
Stato liquido Un liquido e’ caratterizzato da una struttura dinamica, continuamente soggetta a modifiche. I liquidi sono quindi caratterizzati da un ordine.
Stati di aggregazione della materia. 4 variabili: PressioneVolume Temperaturemoli.
TRASMISSIONE E SCAMBIO DI CALORE si chiama calore l’energia che si trasferisce da un corpo a temperatura maggiore a uno a temperatura più bassa HOEPLI.
Forze intermolecolari Claudio P. Lezioni 19,
LO STATO SOLIDO. Solidi cristallini Caratteristica tipica dei solidi cristallini e ̀ l’anisotropia: proprietà di una sostanza per cui i valori delle.
GLI IDROGEL Sistemi polimerici organizzati in strutture tridimensionali, capaci di inglobare grandi quantità di acqua e fluidi biologici mantenendo intatta.
Tra due corpi carichi, con carica Q A e Q B si manifesta una forza il cui valore è dato da Questo valore è: 1.Direttamente proporzionale al prodotto delle.
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
Proprietà delle soluzioni elettrolitiche
VADEMECUM di CHIMICA Classi prime.
Transcript della presentazione:

Metodi di solvatazione Molti processi chimici hanno luogo in un solvente e quindi è chiaramente importante considerare come questo può influire sul comportamento del sistema. In molti casi le molecole del solvente sono direttamente coinvolte e debbono essere modellate esplicitamente. In altri sistemi il solvente non interagisce direttamente con il soluto, ma comunque è in grado d’influire fortemente sul comportamento del soluto. In questi casi può non essere necessario modellare esplicitamente le molecole del solvente, anche se trattamenti particolari possono essere richiesti. In un terzo caso il solvente agisce esclusivamente come “bulk medium”, ma può ancora significativamente influenzare il comportamento del soluto grazie alle sue proprietà dielettriche. In questo caso può essere utile non includere esplicitamente ogni singola molecola di solvente nel sistema in maniera da concentrare gli sforzi computazionali sul comportamento del soluto.

Gsol = Gelec + Gvdw + Gcav Modello del solvente continuo Il solvente agisce come una perturbazione del nostro sistema in fase gas e questo concetto è alla base dei modelli del solvente “continuo”. L’energia libera di solvatazione (Gsol) rappresenta la variazione d’energia libera necessaria affinché una molecola possa essere trasferita dal vuoto in un solvente. Essa include tre componenti: Gsol = Gelec + Gvdw + Gcav   dove Gelec è la componente elettrostatica. Questo contributo è particolarmente importante per soluti carichi che provocano la polarizzazione del solvente, il quale potrà quindi essere rappresentato come un mezzo uniforme con costante dielettrica . Gvdw rappresenta le interazioni di van der Waals tra il soluto ed il solvente; questa può essere ulteriormente suddivisa in un termine repulsivo, Grep, ed in un termine di dispersione attrattiva, Gdisp. Gcav è l’energia libera richiesta per formare la cavità del soluto all’interno del solvente. Questa componente è positiva e comprende la penalizzazione entropica associata alla riorganizzazione delle molecole di solvente attorno al soluto ed al lavoro fatto contro la pressione del solvente nel creare la cavità.

Modello del solvente continuo Nel modello di Born, Gelec di uno ione rappresenta il lavoro fatto per trasferire uno ione dal vuoto in un solvente. Esso è uguale alla differenza in termini di lavoro elettrostatico per caricare lo ione nei due ambienti. Il lavoro per creare uno ione in un mezzo con costante dielettrica  è uguale a q2/2a dove q è la carica dello ione ed a è il raggio della cavità. Il contributo elettrostatico all’energia libera di solvatazione è così pari alla differenza fra il lavoro compiuto per caricare lo ione nel mezzo dielettrico e quello compiuto nel vuoto. Il modello di Born è molto semplice, ma si è spesso dimostrato di grande efficacia. Per quanto riguarda la scelta del raggio della cavità, tradizionalmente vengono usati raggi ionici presi da strutture cristallizzate.