Corso di Laurea in Scienze e tecniche psicologiche

Slides:



Advertisements
Presentazioni simili
ANALISI della VARIANZA FATTORIALE
Advertisements

Metodi Quantitativi per Economia, Finanza e Management Lezione n°4 Analisi bivariata. Analisi di connessione, correlazione e di dipendenza in media.
L’Analisi della Varianza ANOVA (ANalysis Of VAriance)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Presupposti alla lezione
Analisi dei dati per i disegni ad un fattore
Il modello di analisi dei dati nei disegni within.
Il concetto di misura.
Chiara Mocenni - Sistemi di Supporto alle Decisioni I – aa Sistemi di Supporto alle Decisioni I Lezione 2 Chiara Mocenni Corso di laurea L1.
Analisi di covarianza L'analisi di covarianza è un'analisi a metà strada tra l'analisi di varianza e l'analisi di regressione. Nell'analisi di covarianza.
Levels of constraint I vincoli (o livelli di costrizione) sono i condizionamenti impiegati dalla ricerca.
La natura delle ipotesi
Elementi di STATISTICA DESCRITTIVA
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Test Statistici Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
DIFFERENZA TRA LE MEDIE
Analisi della varianza (a una via)
Appunti di inferenza per farmacisti
Metodi di ricerca in Psicologia
Metodi della ricerca in Psicologia
Modello di regressione lineare semplice
Parte I (introduzione) Taratura degli strumenti (cfr: UNI 4546) Si parla di taratura in regime statico se lo strumento verrà utilizzato soltanto per misurare.
Analisi della varianza
Il test di ipotesi Cuore della statistica inferenziale!
Verifica delle ipotesi su due campioni di osservazioni
L’Analisi della Varianza (o ANOVA)
Le distribuzioni campionarie
Cenni teorici. La corrente elettrica dal punto di vista microscopico
Analisi Bivariata: Test Statistici
Esame di Analisi Multivariata dei Dati
Esame di Analisi Multivariata dei Dati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3.
Elementi di Statistica medica Pasquale Bruno Lantieri, Domenico Risso, Giambattista Ravera Copyright © 2007 – The McGraw-Hill Companies s.r.l. SIGNIFICATIVITÀ.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Psicologia come scienza:
Lezione B.10 Regressione e inferenza: il modello lineare
Chiedimi se sono felice (in cinque mosse) A cura del Dipartimento di Statistica e Metodi Quantitativi dell’Università di Milano-Bicocca.
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati Introduzione all’analisi fattoriale.
Corso di Laurea in Scienze e Tecniche psicologiche
Analisi Multivariata dei Dati
L’analisi della varianza
Corso di Laurea in Scienze e tecniche psicologiche
1 Corso di Laurea magistrale in Psicologia Clinica, dello Sviluppo e Neuropsicologia Esame di Analisi Multivariata dei Dati General linear model e mixed.
“Teoria e metodi della ricerca sociale e organizzativa”
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Esercizio 1. Quesiti esercizio 1 Distribuzione congiunta: dalla definizione di distribuzione condizionale.
Frazioni e problemi.
Dalmine, 26 Maggio 2004 Esercitazioni di Statistica con Matlab Dott. Orietta Nicolis fttp:\ingegneria.unibg.it.
Disegni ad un fattore tra i soggetti. Disegni ad un solo fattore between Quando i livelli del trattamento possono influenzarsi reciprocamente è necessario.
analisi bidimensionale #2
ANALISI DELLA VARIANZA (ANOVA)
Correlazione e regressione lineare
EPG di Metodologia della ricerca e Tecniche Multivariate dei dati A.A
2) Lo studio dell‘efficacia Omar Gelo, Ph.D.. I passi di uno studio di efficacia 1)Costituzione dei gruppi (veri esperim.: randomizzazione) o contatto.
L’analisi di regressione e correlazione Prof. Luigi Piemontese.
Corso di Statistica Applicata C. L. in Tecnologie forestali e ambientali 4 crediti (32 ore) Docente: Lorenzo Marini DAFNAE, Università di Padova
I disegni sperimentali e il controllo 1. Procedure del controllo 2. Disegni monofattoriali 3. Disegni multifattoriali.
Dipartimento di Economia, Management e Istituzioni APPPLICAZIONI AZIENDALI MEDIANTE FOGLIO ELETTRONICO 4° modulo: Calcoli statistici, Regressione Prof.
Ipotesi operative TeoriaEsperienza diretta e/o personale Quesito Piano esecutivo Scelta popolazione Scelta strumenti Scelta metodi statistici Discussione.
L’ecologia è oggi sempre più una disciplina che enfatizza lo studio olistico del sistema. Anche se il concetto che l’intero possa essere più della somma.
INTRODUZIONE ALL’ANALISI DELLA VARIANZA
L’analisidei dati L’analisi dei dati Analisi mutlidimensionali: Analisi delle corrispondenze multiple Cluster Analysis.
Analisi delle osservazioni
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
1 Corso di Laurea in Scienze e Tecniche psicologiche Esame di Psicometria Il T-Test A cura di Matteo Forgiarini.
Transcript della presentazione:

Corso di Laurea in Scienze e tecniche psicologiche Esame di Psicometria L’anova fattoriale between A cura di Matteo Forgiarini Matteo.forgiarini@unimib.it

Esercitazione N° 5 – L’anova between Il test anova Esercitazione N° 5 – L’anova between Spesso per scopi di ricerca siamo interessati a stabilire se due popolazioni indipendenti in media mostrano valori statisticamente diversi per la stessa variabile osservata – misurata su scala ordinale. Nelle precedenti analisi abbiamo affrontato e risolto questo problema mediante il t-test: abbiamo confrontato le due medie osservate sui due differenti campioni e analizzando la significatività del valore t sperimentale, abbiamo potuto decidere se accettare o rifiutare l’ipotesi nulla di uguaglianza delle due medie. Ma... Se si volessero confrontare contemporaneamente i valori medi di più di due campioni? Ad esempio, in riferimento al file “competenze.sav”, è possibile domandarsi se i soggetti nati prima del 1948, tra il 1948 e il 1954 e i dopo il 1954, abbiano in media la stessa pressione massima. È un tipo di domanda frequente in molte ricerche: di fatto stiamo cercando di capire se il fattore “età” influisce sulla variabile “pressione massima”; ovvero se nelle 3 differenti fasce di età i soggetti hanno in media la stessa pressione o se le medie differiscono significativamente. In questo caso non è possibile utilizzare i modelli di regressione perché la V.I. non è quantitativa. Per rispondere a questo tipo di domande occorre utilizzare il test anova.

Esercitazione N° 5 – L’anova between Il test anova Esercitazione N° 5 – L’anova between Occorre utilizzare l’anova ogni volta che: Si vuole sapere se una V.D. (misurata su scala a rapporto o a intervallo) presenta valori medi uguali nei diversi livelli di un a V.I. (misurata su scala qualsiasi). Cioè: Si vuole sapere se una variabile categoriale influisce su una variabile quantitativa. Ogni livello della V.I. forma un gruppo di soggetti: dunque ogni livello della V.I. ha un proprio valore medio della V.D. La V.I. ha più di due livelli: dunque occorre confrontare contemporaneamente più di due medie. Se la V.I. ha 2 livelli, è indifferente utilizzare l’anova o il t-test (cfr. diapositive successive). Indicando con µ1, µ2, … µk le medie della V.D. nei k livelli della V.I., l’ipotesi nulla del test anova risulta: H0: µ1= µ2=…= µk H1: µ i≠ µj per almeno una coppia di livelli della V.I. (i e j indicano 2 generici livelli della V.I.)

Esercitazione N° 5 – L’anova between L’anova between fattoriale Esercitazione N° 5 – L’anova between Oltre alle applicazioni fino ad ora affrontate, l’anova permette di rispondere a domande più complesse: infatti è possibile inserire contemporaneamente più di un avariabile indipendente. Ovvero... È possibile eseguire l’anova su disegni fattoriali tramite i quali viene testata, oltre agli effetti principali dei singoli fattori sulla variabile dipendente, anche l’interazione tra i fattori stessi. Infatti se sulla variabile dipendente agiscono 2 fattori contemporaneamente è possibile che essi interagiscano tra loro e che l’effetto di un fattore sulla variabile dipendente sia “modulato” dall’altro fattore, ovvero è possibile che l’effetto del fattore 1 assuma valori differenti nei diversi livelli del fattore 2. Ipotizziamo di testare l’ipotesi che la pressione sanguigna sia influenzata contemporaneamente dal sesso dei soggetti (livello1=femmina;livello2=maschio) e dall’essere fumatori o no dei soggetti stessi. Stiamo testando un anova between fattoriale 2X2.

Esercitazione N° 5 – L’anova between L’anova between fattoriale Esercitazione N° 5 – L’anova between Per testare i modelli anova fattoriali, occorre scegliere il modello lineare generalizzato univariato; nei fattori fissi, inseriamo il “genere” e la variabile “fuma”; inoltre l’analisi dei grafici risulta interessante e utile alla comprensione: selezioniamo “plots” e inseriamo i due fattori per ottenere due diverse linee; infine “aggiungiamo” il grafico desiderato.

Esercitazione N° 5 – L’anova between L’anova between fattoriale Esercitazione N° 5 – L’anova between Effetti principali Interazione Testando un modello fattoriale con due variabili indipendenti verranno eseguiti 3 test f: un test per l’effetto principale del fattore 1, un test per l’effetto principale del fattore 2 e un test sull’interazione tra i due fattori. Dall’analisi degli output, possiamo notare che gli effetti principali dei due fattori risultano significativi (p-value<0,05): la media della pressione sanguigna dei maschi risulta statisticamente diversa da quella delle femmine; similmente i non fumatori hanno una pressione media differente dai fumatori. Risulta interessante notare che l’interazione tra i fattori risulta non significativa: i due fattori in modo indipendente hanno influenza sulla V.D., ma l’effetto di ogni fattore non varia nei diversi livelli dell’altro fattore: il fattore “genere” influisce in ugual misura per i fumatori e per i non fumatori; similmente è possibile concludere che il fattore “fuma” influisce sulla V.D. con la stessa forza in modo indipendente dal genere dei soggetti.

Esercitazione N° 5 – L’anova between L’anova between fattoriale Esercitazione N° 5 – L’anova between È possibile notare la mancanza di interferenza tra i fattori anche osservando il grafico che spss ha prodotto: le linee sono quasi parallele: infatti la riduzione di pressione nei soggetti non fumatori ha quasi la stessa entità per i maschi e per le femmine. Dicendo che le linee sono “quasi” parallele, considerando che l’interazione non risulta significativa, affermiamo che il “quasi” identifica una differenza tanto piccola da non rendere significativo l’effetto di interazione.

Esercitazione N° 5 – L’anova between L’anova between fattoriale Esercitazione N° 5 – L’anova between Analizziamo ora un modello anova fattoriale che permetta di capire se la pressione sanguigna (V.D.) è influenzata dal genere dei soggetti (fattore 1) e contemporaneamente dalla residenza in diverse città lombarde (Bergamo, Milano, Cremona e Varese) (fattore 2). Dall’analisi degli output, notiamo che il fattore genere risulta significativo (p-value<0,05); il fattore “città” risulta invece non significativo (p-value>0,05): possiamo quindi concludere che la pressione sanguigna dei soggetti non è influenzata in modo significativo dai differenti stili di vita delle 4 città lombarde.. Contemporaneamente la pressione dei soggetti maschi risulta statisticamente diversa da quella dei soggetti femmine. Ma... Notiamo che l’interazione tra i due fattori risulta significativa (p-value<0,05): possiamo quindi concludere che il fattore “genere” influenza la pressione sanguigna in modo differente nelle 4 città. Esaminiamo il grafico...

Esercitazione N° 5 – L’anova between L’anova between fattoriale Esercitazione N° 5 – L’anova between Le quattro rette non risultano parallele: la riduzione media della pressione sanguigna delle femmine rispetto ai maschi non è omogenea nelle 4 città lombarde considerate. In particolare a Milano si può notare che le femmine hanno in media una pressione maggiore dei soggetti maschi.

Alcuni pattern di risultati possibili Effetti principali Nessun effetto

Alcuni pattern di risultati possibili Interazione