1 1. Classificazione dei sistemi e dei modelli La teoria dei sistemi e del controllo si è sempre tradizionalmente occupata dei sistemi a variabili continue.

Slides:



Advertisements
Presentazioni simili
Teoria e Tecniche del Riconoscimento
Advertisements

MULTIVIBRATORI BISTABILI
CORSO DI RECUPERO CONTROLLI AUTOMATICI Prof. Filippo D’Ippolito
Dalla macchina alla rete
L’ IPERBOLE.
SCALA INTERVALLO / A RAPPORTO
2. Introduzione alla probabilità
CINEMATICA SINTESI E APPUNTI.
6a_EAIEE EQUAZIONI D’ONDA (ultima modifica 19/11/2012)
1. Classificazione dei sistemi e dei modelli
6. Catene di Markov a tempo continuo (CMTC)
1. Classificazione dei sistemi e dei modelli
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Introduzione Cosa sono le reti di Petri?
Modellistica e simulazione
1 Il punto di vista Un sistema è una parte del mondo che una persona o un gruppo di persone, durante un certo intervallo di tempo, sceglie di considerare.
Magnetostatica 3 6 giugno 2011
Teoria della relatività-1 17 dicembre 2012
Introduzione alle curve ellittiche
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Sintesi dei dati La sintesi dei dati comporta una perdita di informazioni, deve quindi essere privilegiato l’indice di sintesi che minimizza la perdita.
Chiara Mocenni - Sistemi di Supporto alle Decisioni I – aa Sistemi di Supporto alle Decisioni I Dynamic Programming Chiara Mocenni Corso di.
Modelli Modellistica e Gestione dei Sistemi Ambientali a.a
Chiara Mocenni - Sistemi di Supporto alle Decisioni I – aa Sistemi di Supporto alle Decisioni I Scelte di consumo Chiara Mocenni Corso di laurea.
Alberi binari di ricerca
Lezione 4 IL MERCATO DEI BENI
1 Istruzioni, algoritmi, linguaggi. 2 Algoritmo per il calcolo delle radici reali di unequazione di 2 o grado Data lequazione ax 2 +bx+c=0, quali sono.
6. Catene di Markov a tempo continuo (CMTC)
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
4. Automi temporizzati Il comportamento dei sistemi ad eventi temporizzati non è definito semplicemente da una sequenza di eventi o di valori dello stato,
5. Catene di Markov a tempo discreto (CMTD)
Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l’insieme di tutti.
Introduzione ai circuiti sequenziali
Esercizio 1 Due collegamenti in cascata, AB e BC hanno una velocità rispettivamente di 100 Mb/s e 50 Mb/s e tempi di propagazione pari a 1 ms e 1.2 ms.
Identificazione delle attività
Camil Demetrescu, Irene Finocchi, Giuseppe F. ItalianoAlgoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 2 Modelli di calcolo e metodologie.
Processi Aleatori : Introduzione – Parte I
7. Teoria delle Code Una coda è costituita da 3 componenti fondamentali: i serventi i clienti uno spazio in cui i clienti attendono di essere serviti.
8. Reti di Code Nella maggior parte dei processi produttivi risulta troppo restrittivo considerare una sola risorsa. Esempio: linea tandem arrivi 1 v.
Realizzazione e caratterizzazione di una semplice rete neurale per la separazione di due campioni di eventi Vincenzo Izzo.
Seminario su clustering dei dati – Parte II
CORSO DI MODELLI DI SISTEMI BIOLOGICI
ANALISI DEI SISTEMI AD EVENTI
AUTOMAZONE INDUSTRIALE I
Analisi e Sintesi di circuiti sequenziali. Definizione Una macchina sequenziale é un sistema nel quale, detto I(t) l'insieme degli ingressi in t, O(t)
Laboratorio di El&Tel Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi Mauro Biagi.
Master universitario di II livello in Ingegneria delle Infrastrutture e dei Sistemi Ferroviari Anno Accademico 2012/2013 Cultura dimpresa, valutazione.
I numeri by iprof.
Lezione 4 Probabilità.
Lezione 13 Equazione di Klein-Gordon Equazione di Dirac (prima parte)
Contatore: esempio di circuito sequenziale
Candidato : Giuseppe Circhetta Relatori :
SISTEMI LINEARI TEMPO INVARIANTI SEZIONE 7
La funzione del magazzino e la politica delle scorte
Introduzione al comportamento complesso e caotico dei sistemi
Statistica economica (6 CFU) Corso di Laurea in Economia e Commercio a.a Docente: Lucia Buzzigoli Lezione 5 1.
RETE ASINCRONA Una rete sequenziale asincrona prende in ingresso due segnali X2 e X1 emessi da un telecomando e, in base alle combinazioni successive di.
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
è … lo studio delle caratteristiche di regolarità dei fenomeni casuali
Metodi matematici per economia e finanza. Prof. F. Gozzi
Capitolo III. Il mercato dei beni.
Prof. Filippo D’Ippolito
Automi temporizzati.
Calcolatori Elettronici
Meccanica - I moti 1. Il moto uniforme I.
R. Soncini Sessa, MODSS, 2004 L07 Sistemi, dominii e reti causali Rodolfo Soncini Sessa MODSS Copyright 2004 © Rodolfo Soncini Sessa.
Diagramma degli Stati. Diagramma degli Stati … Definizione è un grafico con nodi ed archi in cui i nodi rappresentano gli stati di una classe e gli archi,
I modelli di offerta per i sistemi di trasporto Corso di Progettazione dei Sistemi di Trasporto Prof. B. Montella a. a. 2015/16.
Il Moto. Partendo da una quesito assegnato nei test di ingresso alla facoltà di medicina, si analizza il moto di un oggetto.
1 VARIABILI CASUALI. 2 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l’esito.
Transcript della presentazione:

1 1. Classificazione dei sistemi e dei modelli La teoria dei sistemi e del controllo si è sempre tradizionalmente occupata dei sistemi a variabili continue modellati da equazioni differenziali o alle differenze. Tali modelli sono tuttavia inadeguati nella descrizione dei sistemi man-made. Sistemi dinamici i cui stati assumono diversi valori logici o simbolici in corrispondenza delloccorrenza di eventi. Es: processi produttivi, reti di trasporto, di comunicazione, etc.

2 Es. di eventi: arrivo o partenza di un cliente, completamento di una lavorazione, guasto o riparazione di una macchina, trasmissione o ricezione di un insieme di dati, etc. Levoluzione nel tempo di tali sistemi è dettata dalloccorrenza degli eventi mentre i micro-cambiamenti che avvengono continuamente allinterno del sistema vengono ignorati. Sistemi ad eventi discreti

3 Sistemi ibridi Sist. ad avanzamento temporale Sist. ad eventi discreti Un sistema la cui evoluzione è dettata sia dalloccorrenza di eventi discreti, sia dal trascorrere del tempo viene detto ibrido.

4 Principi di base della teoria classica dei sistemi e del controllo Nozione fondamentalesistema Dizionario Webster: Un sistema è ununità complessa formata da molte componenti, spesso diverse tra loro, soggette ad un piano comune o orientate verso un obiettivo comune. Dizionario IEEE: Un sistema è una combinazione di elementi che cooperano per svolgere una funzione altrimenti impossibile per ciascuno dei singoli componenti.

5 Per procedere ad unanalisi quantitativa di un sistema è indispensabile la formulazione di un modello formale che riproduca il comportamento del sistema. Ogni sistema fisico è caratterizzato da un certo numero di variabili fisiche che evolvono nel tempo: cause esterne al sistema ingressi del sistema effetti uscite del sistema uy S S realizza la dipendenza degli effetti dalle cause esterne al sistema.

6 Esempio: pantografo m KwKw K b u y Y: posizione di equilibrio di m u: posizione di equilibrio del punto di contatto con la catenaria (sist. ad avanzamento temporale; g. fisiche: f. continue)

7 In generale luscita ad un dato istante di tempo dipende anche dalla storia del sistema. Lo stato di un sistema allistante di tempo 0 è la grandezza che contiene linformazione necessaria in 0 per determinare univocamente landamento delluscita y( ), per 0, sulla base della conoscenza dellandamento dellingresso u( ), 0 e dello stato in 0.

8 Si definiscono equazioni di stato linsieme di equazioni che determinano lo stato x( ) per ogni 0 sulla base di x( 0 ) e di u( ), 0. Modello a tempo continuo uxy x0x0

9 Esempio: pantografo N.B. La scelta del modello in termini di variabili di stato non è mai unica.

10 Se il tempo è discreto, cioè rappresentato dallintero k, k=0,1,…, il sistema può venire descritto mediante un insieme di equazioni alle differenze: Modello a tempo discreto uxy x0x0

11 Esempio: sequenza di Fibonacci Si consideri un allevamento di conigli e si supponga che: 1) i conigli siano immortali 2) dopo un anno raggiungono la maturità dopo di che generano una coppia di conigli allanno tempo(anni)coppie di conigli (sist. ad avanzamento temporale; g. fisiche: f. discrete)

12 Y(k+2) = y(k+1) + y(k) coppie di conigli presenti 2 anni prima = coppie di conigli maturi = coppie di conigli generati questanno coppie di conigli esistenti lanno precedente Se suppongo di vendere un certo numero di coppie di conigli ogni anno (introduco un controllo), il modello diviene Y(k+2) = y(k+1) + y(k)-u(k+2)

13 I sistemi ad eventi discreti La ricerca nellabito dei sistemi ad eventi discreti (SED) sta acquistando un ruolo sempre più rilevante nella comunità scientifica e ciò è una immediata conseguenza della crescente complessità dei sistemi creati dalluomo. La teoria dei SED si sta evolvendo ora in analogia alla teoria classica dei sistemi e del controllo concetti di stabilità, controllabilità, osservabilità, etc.

14 Levoluzione in questo caso è asincrona ossia basata sui tempi di occorrenza degli eventi e non su una temporizzazione regolare. Un sistema ad eventi discreti è un sistema dinamico il cui comportamento è caratterizzato dalloccorrenza di eventi istantanei con un cadenzamento irregolare non necessariamente noto. Alcuni sistemi sono intrinsecamente ad eventi e la risoluzione di un problema di controllo in questo caso consiste nella determinazione di una politica di gestione e di coordinamento degli eventi.

15 Definizione formale: Un SED è un sistema il cui comportamento dinamico è caratterizzato dallaccadimento asincrono di eventi che individuano lo svolgimento di attività di durata non necessariamente nota. Un SED è caratterizzato da: insieme degli eventi E spazio di stato X (insieme discreto) evoluzione dello stato regolata dagli eventi x k+1 = (x k,e k ) k N funzione di transizione di stato

16 Esempio: il sistema a coda Un sistema a coda si basa su 3 componenti fondamentali: le entità che attendono per poter utilizzare le risorse (clienti) le risorse (servitori o serventi) lo spazio in cui si attente (coda) arrivo clienti partenza clienti codaservitore

17 Insieme degli eventi E={a,p} a : evento di arrivo di un cliente p : evento di partenza di un cliente I clienti possono essere: persone, veicoli di trasporto, messaggi, etc. I serventi possono essere: persone, macchine, semafori, canali di comunicazione, etc.

18 Se scegliamo come variabile di stato il numero di clienti in coda Spazio di stato X={0,1,2,…}=N 0123 a aa ppp Il sistema a coda può venire rappresentato mediante il seguente grafo

19 Esempio: macchina soggetta a guasti X = {F (macchina ferma), L (macchina che lavora), G (macchina guasta)}spazio di stato E = {inizio,fine,rottura,riparazione}spazio degli eventi FL G inizio fine rottura riparazione

20 Esempio: circuito elettrico l1l1 l2l2 s d Linterruttore può ruotare a sinistra o a destra di 1/4 di giro. Ci sono 4 possibili posizioni ss s d dd d s

21 Possiamo individuare 3 insiemi: X = {x 1,x 2,x 3,x 4 }posizioni dellinterruttore E = {s,d}rotazioni Y = {l 1,l 2,b}condizioni delle lampade Tale sistema può essere rappresentato mediante il seguente grafo. x1x1 x4x4 x2x2 x3x3 d s s s s d d d x1x1 x2x2 x3x3 x4x4

22 Se assumiamo linsieme Y come spazio di stato, allora il sistema può essere rappresentato mediante il seguente grafo l1l1 b s,d l2l2 Se poi volessimo addirittura limitarci a distinguere il buio dalla luce l b s,d x4x4 x1x1 x3x3 x2x2 x2x4x2x4 x1x3x1x3

23 A tale sistema possiamo anche associare una evoluzione temporale x1x1 x4x4 x2x2 x3x3 d s s s s d d d X x1x1 x2x2 x3x3 x4x4 t t1t1 t2t2 sdsss t3t3 t4t4 t5t5

24 Modellazione di sistemi ad eventi discreti Un modello ad eventi discreti è un modello matematico in grado di rappresentare linsieme delle traiettorie (o tracce) degli eventi che possono essere generate da un sistema. In generale linsieme delle possibili traiettorie degli eventi è infinito, mentre il modello deve comunque essere finito. A seconda del livello di astrazione con cui le diverse traiettorie possono venire rappresentate, i modelli vengono distinti in due diverse categorie: Modelli logici e Modelli temporizzati

25 Modelli logici La traccia è una sequenza di eventi {e 1,e 2,e 3 …} in ordine di occorrenza. La traiettoria è allora la sequenza degli stati raggiunti {x 0,x 1,x 2,…}. Modelli temporizzati La traccia è una sequenza di coppie {(e 1,t 1 ),(e 2,t 2 ),(e 3,t 3 ),...} in ordine di occorrenza. La traiettoria è ancora la sequenza degli stati raggiunti {x 0,x 1,x 2,…}. In questo caso tuttavia conosciamo esattamente listante di tempo in cui ciascuno stato viene raggiunto.

26 I modelli logici rendono agevole lo studio delle proprietà qualitative del sistema analisi strutturale. I modelli temporizzati permettono di studiare levoluzione temporale di un sistema analisi prestazionale. I modelli temporizzati possono essere: deterministici (gli intervalli tra 2 eventi sono noti) stocastici (gli intervalli sono variabili casuali) Una trattazione analitica diventa estremamente complessa simulazione

Sistemi ibridi Sistemi ad avanzamento temporale (SAT) Sistemi ad eventi discreti (SED) SAT a tempo continuo SAT a tempo discreto SAT a t. continuo lineari SAT a t. continuo non lineari SAT a t. discreto lineari SAT a t. discreto non lineari SED temporizzati SED logici SED deterministici SED stocastici