Regressione logistica

Slides:



Advertisements
Presentazioni simili
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Advertisements

ITIS “G.Galilei” – Crema Lab. Calcolo e Statistica
Come organizzare i dati per un'analisi statistica al computer?
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Analisi Bivariata e Test Statistici
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Analisi Bivariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 8.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Analisi Bivariata & Esercizi Analisi Univariata
Test Statistici Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Analisi Bivariata & Esercizi Analisi Univariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
Analisi Bivariata e Test Statistici
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Ipotesi e proprietà dello stimatore Ordinary Least Squares (OLS)
ALCUNI METODI STATISTICI PER LA SELEZIONE DELLE VARIABILI NELL’ANALISI DISCRIMINANTE Eliminazione di variabili con contributo discriminatorio statisticamente.
STATISTICA 6.0: REGRESSIONE LINEARE
MODELLO DI REGRESSIONE LINEARE MULTIPLA: USO DELLE VARIABILI DUMMY (parte 2) In alcune circostanze è opportuno inserire, come variabili esplicative, delle.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA: test sui parametri e scelta del modello (parte 3) Per effettuare test di qualsiasi natura è necessaria.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
La regressione logistica binomiale
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Dall’analisi Fattoriale alla regressione lineare
STATISTICA PER LE DECISIONI DI MARKETING
Regressione Logistica
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°6.
Regressione logistica
STATISTICA PER LE DECISIONI DI MARKETING
Uso dei Modelli in Statistica
STATISTICA PER LE DECISIONI DI MARKETING
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
DATA MINING PER IL MARKETING
DATA MINING PER IL MARKETING
Analisi Bivariata: Test Statistici
Esercizi Analisi Fattoriale + Regressione lineare Regressione logistica Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°13.
Dall’Analisi Fattoriale alla Regressione Lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 11.
Esercizi riepilogativi Analisi Univariata e Bivariata
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: la stima del modello e la sua valutazione, metodi automatici.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Analisi Bivariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13 Regressione Logistica: La stima e l’interpretazione del del modello.
Regressione logistica
redditività var. continua classi di redditività ( < 0 ; >= 0)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10 Regressione lineare multipla: la valutazione del modello, metodi automatici di selezione.
Analisi Multivariata dei Dati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Analisi discriminante lineare - contesto
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Regressione lineare - Esercizi
Regressione logistica Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Regressione lineare - Esercizi Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°9.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13.
Correlazione e regressione lineare
TEST STATISTICI PER SCALE NOMINALI, TASSI E PROPORZIONI Non sempre la variabile aleatoria (risultato sperimentale) è un numero ma è spesso un esito dicotomico.
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Transcript della presentazione:

Regressione logistica Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10

Regressione logistica - Modello Modello di regressione logistica si vuole modellare la relazione tra una variabile dipendente dicotomica (0-1) e un insieme di regressori che si ritiene influenzino la variabile dipendente la variabile dicotomica rappresenta presenza/assenza di un fenomeno oppure successo/fallimento l’obiettivo è stimare l’equazione dove π:= Pr(Y=1 l X) è la probabilità che il fenomeno si verifichi

Regressione logistica – Analisi preliminari Prima di stimare il modello valutare la presenza di multicollinearità tra i regressori (PROC CORR per analizzare la matrice di correlazione tra i regressori che entrano nel modello) eventualmente tenere solo alcune delle variabili fortemente correlate (fare delle prove…)

Regressione logistica – Selezione regressori Scelta dei regressori che entrano nel modello eventualmente eliminare a priori alcuni regressori in seguito all’analisi di multicollinearità metodo di selezione automatica (PROC LOGISTIC con opzione STEPWISE)  funziona come per la regressione lineare

Regressione logistica – Valutazione modello Valutazione della bontà del modello (output della PROC LOGISTIC) Wald Chi_square test  OK p-value con valori piccoli  equivalente al test t nella regressione lineare (valuta la significatività dei singoli coefficienti = la rilevanza dei corrispondenti regressori nella spiegazione della variabile dipendente) Likelihood ratio test/score test/Wald test  OK p-value con valori piccoli  equivalenti al test F nella regressione lineare (valuta la capacità esplicativa del modello) Percentuale di concordant  valuta la capacità del modello di stimare la probabilità che il fenomeno si verifichi (quanto più la percentuale è alta tanto migliore è il modello)

PROC LOGISTIC – Sintassi Modello di regressione logistica – k regressori specificati a priori proc logistic data= dataset descending; class regressore_1…regressore_m /param= glm; model variabile dipendente= regressore_1 . regressore_k /option(s); run; ordina la variabile dipendente automaticamente crea variabili dummy per i regressori nominali utilizzando il metodo “glm” OPTIONS: /stb calcola i coefficienti standardizzati /selection=stepwise applica la procedura stepwise per la selezione dei regressori

Regressione logistica – Esempio DATA SET: TELEFONIA VARIABILE DIPENDENTE: 0: non utilizza gli MMS 1: utilizza gli MMS Obiettivo: prevedere l’utilizzo del servizio MMS a partire da un insieme di variabili (continue, discrete, dicotomiche).

Sintassi ordina la variabile dipendente creazione dummy proc logistic data= corso.telefonia_1 descending; class marca sesso sistemazione tecnologia/param = glm; model uso_mms= marca sesso sistemazione tecnologia durata_chiamate_e durata_chiamate_r email_g email_h eta fisso_g fisso_h imessaging_g imessaging_h importanza num_chiamate_e num_chiamate_r num_contatti perc_altri_ope perc_cell_mattino perc_cell_notte perc_cell_pome perc_cell_sera perc_comunica_mattino perc_comunica_notte perc_comunica_pome perc_comunica_sera perc_estero perc_fisso perc_ope ricarica_importo dolby dvd dvx email fisso imessaging lettore_mp3 macchina_foto reddito /selection=stepwise stb; run; creazione dummy variabile dipendente metodo di selezione stepwise e coeff. standardizzati

Regressione Logistica Il metodo di selezione automatico stepwise seleziona le seguenti variabili: Var qualitativa Var quantitative

Multicollinearità Verificare la presenza di multicollinearità tra i regressori ed eventualmente eliminarne alcuni. Se il coeff. di correlazione tra due o più regressori è alto (>0.5) tenere nel modello il regressore più correlato con la variabile dipendente o quello più importante in termini di business. proc corr data= corso.telefonia_1 ; var importanza num_contatti perc_altri_ope perc_comunica_sera ; run;

Test statistici (1/2) Test per valutare la significatività congiunta dei coefficienti (“Testing Global Null Hypothesis: BETA=0”) P-VALUE ipotesi nulla Se il p-value piccolo (rifiuto H0), quindi il modello ha buona capacità esplicativa. N.B. Equivalenti al Test F della regressione lineare

Test statistici (2/2) Test per valutare la significatività dei singoli coefficienti P-VALUE ipotesi nulla Il coefficiente è significativo (significativamente diverso da 0) se il corrispondente p-value è piccolo (ossia, rifiuto l’ipotesi di coefficiente nullo)  il regressore a cui il coefficiente è associato è rilevante per la spiegazione del fenomeno N.B. Equivalente al Test t della regressione lineare

Interpretazione coefficienti Si guarda il segno del coeff. Variabili qualitative: SESSO F vs. M: -1.3325 Le femmine usano meno il servizio MMS dei maschi. N.B. per le variabili qualitative i parametri stimati sono relativi alle dummy e forniscono la differenza nell’effetto di ogni livello confrontato con l’ultimo. Variabili quantitative: NUM_CONTATTI (# persone contattate più frequentemente): 0.2092 Soggetti con community più estese mandano più MMS segno positivo PERC_COMUNICA_SERA (% comunicazioni che avvengono di sera): -0.0229 Chi comunica prevalentemente la sera manda meno MMS segno negativo

Segno dei coefficienti Il segno dei coefficienti deve rispettare la relazione tra il regressore e la variabile dipendente. Come controllare? + : relazione positiva - : relazione negativa Variabili quantitative Variabili qualitative proc corr data= corso.telefonia_1 ; var uso_mms; with importanza num_contatti perc_altri_ope perc_comunica_sera ; run; proc freq data=corso.telefonia_1; table sesso*uso_mms; run;

Importanza dei coefficienti In presenza di regressori quantitativi, i coefficienti standardizzati possono essere utili per valutare l’importanza relativa delle variabili, capire quali sono quelle che pesano di più nel modello. Si guarda il valore assoluto del coeff. standardizzato La variabile num_contatti è quella che pesa di più nel modello e perc_comunica_sera è quella meno importante.

Bontà del modello Tanto maggiore è il numero dei CONCORDANT (e quindi tanto minore è il numero dei DISCORDANT), tanto più il modello rappresenterà adeguatamente il fenomeno indagato.