Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.

Slides:



Advertisements
Presentazioni simili
LA MEDIA STATISTICA di Zappa Giacomo.
Advertisements

Metodi Quantitativi per Economia, Finanza e Management Lezione n°4 Analisi bivariata. Analisi di connessione, correlazione e di dipendenza in media.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Come organizzare i dati per un'analisi statistica al computer?
Distribuzione Normale o Curva di Gauss
Variabili casuali a più dimensioni
Analisi di covarianza L'analisi di covarianza è un'analisi a metà strada tra l'analisi di varianza e l'analisi di regressione. Nell'analisi di covarianza.
Analisi Bivariata e Test Statistici
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Analisi Bivariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Metodi Quantitativi per Economia, Finanza e Management Lezione n°7.
Analisi Bivariata e Test Statistici
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.
Esercizio 1 In una indagine statistica si vuole rilevare il numero di cellulari posseduti dagli studenti iscritti alla facoltà di economia. Si dica: -
VARIABILI DOPPIE: UN ESEMPIO
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
DISTRIBUZIONE CAMPIONARIA CONGIUNTA DI DUE VARIABILI (1)
Analisi della varianza (a una via)
L’analisi Bivariata Studia la relazione fra coppie di variabili.
Processi Aleatori : Introduzione – Parte I
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Corso di biomatematica lezione 6: la funzione c2
Analisi bivariata Passiamo allo studio delle relazioni tra variabili
Modello di regressione lineare semplice
Analisi delle corrispondenze
Cap. 10 Indipendenza, connessione e associazione Cioè l’analisi statistica congiunta di una coppia di fenomeni qualitativi.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3 Le distribuzioni di frequenza e le misure di sintesi univariate.
Introduzione Statistica descrittiva Si occupa dellanalisi dei dati osservati. Si basa su indicatori statistici (di posizione, di variazione, di concentrazione,
Corso di POPOLAZIONE TERRITORIO E SOCIETA’ 1 AA
La ricerca delle relazioni tra fenomeni
COVARIANZA e CORRELAZIONE.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
La regressione come strumento di sintesi delle relazioni tra variabili
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Analisi Bivariata I° Parte.
Corso di Analisi Statistica per le Imprese Cross tabulation e relazioni tra variabili Prof. L. Neri a.a
Metodi Quantitativi per Economia, Finanza e Management Lezione n°3.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Un insieme limitato di misure permette di calcolare soltanto i valori di media e deviazione standard del campione, ed s. E’ però possibile valutare.
Accenni di analisi monovariata e bivariata
Strumenti statistici in Excell
Corso di Laurea in Scienze e Tecniche psicologiche
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10 Regressione lineare multipla: la valutazione del modello, metodi automatici di selezione.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
UNIVERSITA’ DEGLI STUDI DI PERUGIA
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13.
Accenni di analisi monovariata e bivariata
ANALISI E INTERPRETAZIONE DATI
TRATTAMENTO STATISTICO DEI DATI ANALITICI
analisi bidimensionale #2
L’analisi di regressione e correlazione Prof. Luigi Piemontese.
DIPENDENZA STATISTICA TRA DUE CARATTERI Per una stessa collettività può essere interessante studiare più caratteri presenti contemporaneamente in ogni.
Accenni di analisi monovariata e bivariata. ANALISI MONOVARIATA Analisi delle informazioni ricavabili da una variabile alla volta, prescindendo dalle.
Statistica : scienza che ha come fine lo studio quantitativo e qualitativo di un “collettivo”. L’etimologia della parola pare derivi dal vocabolo “stato”e.
L’analisidei dati L’analisi dei dati Analisi mutlidimensionali: Analisi delle corrispondenze multiple Cluster Analysis.
INDICATORI DI TENDENZA CENTRALE. Consentono di sintetizzare un insieme di misure tramite un unico valore “rappresentativo”  indice che riassume o descrive.
Analisi delle osservazioni
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Statistica descrittiva bivariata
Statistica descrittiva bivariata
Statistica descrittiva bivariata
Statistica descrittiva bivariata
Transcript della presentazione:

Metodi Quantitativi per Economia, Finanza e Management Lezione n°6

Statistica descrittiva bivariata Indaga la relazione tra due variabili misurate. Si distingue rispetto alla tipologia delle variabili indagate: var. qualitative/quantitative discrete: tavole di contingenza (o a doppia entrata) var. quantitative: analisi di correlazione lineare una var. qualitativa e una quantitativa: confronto tra le medie

Tavole di contingenza Sono tabelle a doppia entrata; i valori riportati allinterno della tabella sono le frequenze congiunte assolute, e la loro somma è pari al totale dei casi osservati. Dalla tabella si possono ricavare inoltre le distribuzioni marginali, sommando per riga e per colonna le frequenze congiunte; le frequenze relative congiunte, pari al rapporto tra le frequenze assolute congiunte e il totale dei casi osservati.

Dalle tabelle di contingenza si possono ricavare ulteriori distribuzioni unidimensionali : –Frequenze subordinate ovvero la frequenza di osservare il carattere x dato il carattere y e viceversa. Formalmente: P y|x (x i,y j ) = P (x i,y j ) / P x(x i ) P x|y (x i,y j ) = P (x i,y j ) / P y(y j ) Indipendenza statistica se al variare di X le distribuzioni subordinate (Y|X)= x i sono tutte uguali tra loro,si può concludere che la distribuzione del carattere Y non dipende da X. Nel caso di indipendenza statistica, la frequenza relativa congiunta è pari al prodotto delle marginali corrispondenti P(x i,y j )=P x (x i )P y (y j ) Lindipendenza stat. è un concetto simmetrico: se vale per X, vale anche per Y. Se si verifica, vuol dire che lanalisi bivariata di X (Y) non dà informazioni aggiuntive rispetto allanalisi univariata. Tavole di contingenza

–Perfetta dipendenza unilaterale ad ogni valore di X corrisponde un solo valore di Y, ma non è detto che si verifichi il contrario. In generale, quando il numero di colonne (valori assunti dalla Y) è inferiore al numero di righe (valori assunti dalla X) non è mai possibile che X dipenda perfettamente da Y. –Perfetta dipendenza bilaterale ad ogni valore di X corrisponde un solo valore di Y e viceversa; la perfetta dipendenza bilaterale si può avere allora solo per matrici quadrate. Tavole di contingenza

Indici di connessione Nella realtà è difficile che si verifichi la condizione di indipendenza statistica. Pertanto è utile disporre di indici che misurino il grado di connessione tra le variabili. –χ² (chi-quadrato) assume valore nullo se i fenomeni X e Y sono indipendenti. Risente del numero delle osservazioni effettuate quindi al crescere di N, lindice tende a crescere. χ²=N Σ Σ [P(x i,y j )-P x (x i ) y (y j )] ²/ P x (x i ) P y (y j )

–Un indice più efficace (perchè relativo, e dunque non risente del numero di osservazioni) è lindice di Cramer V, basato sul χ². assume valori compresi tra 0 e 1: 0 nel caso di indipendenza statistica, 1 nel caso di perfetta dipendenza almeno unilaterale e tende a crescere allaumentare del grado di dipendenza delle variabili considerate. Indici di connessione

Correlazione lineare Le misure di connessione possono essere applicate a variabili qualitative. Se si vuole misurare il grado di concordanza tra due variabili quantitative occorre utilizzare altri indici: –Covarianza Cov(X,Y) è un indice che assume valori positivi se vi è concordanza tra X e Y (a modalità elevate delluna, corrispondono modalità elevate dellaltra); assume valori negativi nel caso di discordanza (a modalità elevate delluna non corrispondono modalità elevate dellaltra). Nel caso di indipendenza statistica, assumerà valore nullo. È un indice assoluto, ovvero segnala la presenza e la direzione di un legame tra due variabili, ma nulla si può dire sul grado del loro legame. Cov(X,Y)= Σ Σ (x i -μ x ) (y j - μ y ) p(x i,y j )

Covarianza tra due variabili: Cov(x,y) > 0 x e y tendono a muoversi nella stessa direzione Cov(x,y) < 0 x e y tendono a muoversi in direzioni opposte Cov(x,y) = 0 x e y no relazione lineare –Riguarda solo la forza della relazione, ma non implica un effetto causale Correlazione lineare

–Coefficiente di correlazione lineare ρ(X,Y) è un indice relativo che ovvia al problema del precedente indice. Assume valori compresi tra -1 e 1. In particolare vale 1 se e solo se Y è funzione lineare di X (e viceversa) e in questo caso i punti corrispondenti alle osservazioni sono disposti su una retta con inclinazione positiva. Analogamente lindice assume valore -1 nel caso in cui i punti siano disposti su una retta con inclinazione negativa. Assume valore nullo se tra le variabili non è presente alcun tipo di relazione lineare (indipendenti in correlazione). Correlazione lineare

Coefficiente di correlazione lineare ρ(X,Y) : ρ = 0 => non cè relazione lineare tra X e Y ρ > 0 => relazione lineare positiva tra X e Y »quando X assume valori alti (bassi) allora anche Y probabilmente assume valori alti (bassi) »ρ = +1 => dipendenza lineare perfetta positiva ρ relazione lineare negativa tra X e Y »quando X assume valori alti (bassi) allora Y probabilmente assume valori bassi (alti) »ρ = -1 => dipendenza lineare perfetta negativa Correlazione lineare

Senza unità di misura Campo di variazione fra –1 e 1 Quanto più è vicino a –1, tanto più è forte la relazione lineare negativa Quanto più è vicino a 1, tanto più è forte la relazione lineare positiva Quanto più è vicino a 0, tanto più è debole la relazione lineare Correlazione lineare

Y X Y X Y X Y X Y X r = -1 r = -.6r = 0 r = +.3 r = +1 Y X r = 0 Correlazione lineare

Confronto tra le medie Se si vuole incrociare una variabile quantitativa con una variabile qualitativa, la loro relazione può essere descritta confrontando le medie della variabile numerica allinterno delle categorie definite dalla variabile misurata a livello nominale/ordinale. Rapidità Tipo cliente MediaN Persone fisiche Aziende Totale

Un indice sintetico dellintensità della relazione si basa sulla scomposizione della varianza per la variabile quantitativa Y, di cui viene studiata la dipendenza nei confronti della variabile categorica X. La variabilità totale di Y è SQT y =SQ tra + SQ nei dove SQT y (somma dei quadrati tot) è la variabilità tot, SQ tra (somma dei quadr. tra i gruppi) esprime quanta variabilità di Y può essere legata al variare delle categorie di X, SQ nei (somma dei quadr.nei gruppi) esprime la variabilità nellandamento di Y indipendente da X. Confronto tra le medie