Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.

Slides:



Advertisements
Presentazioni simili
ESERCITAZIONE 2 Come leggere la tavola della normale e la tavola t di Student. Alcune domande teoriche.
Advertisements

Test delle ipotesi Il test consiste nel formulare una ipotesi (ipotesi nulla) e nel verificare se con i dati a disposizione è possibile rifiutarla o no.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°4 Analisi bivariata. Analisi di connessione, correlazione e di dipendenza in media.
L’Analisi della Varianza ANOVA (ANalysis Of VAriance)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
ITIS “G.Galilei” – Crema Lab. Calcolo e Statistica
METODI STATISTICI PER LO STUDIO DELL’ASSOCIAZIONE TRA DATI QUALITATIVI
Intervalli di confidenza
Il chi quadro indica la misura in cui le
Analisi dei dati per i disegni ad un fattore
ANALISI DELLA COVARIANZA
Analisi Bivariata e Test Statistici
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Test Statistici Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
Analisi Bivariata e Test Statistici
Corso di Calcolo delle Probabilità e Statistica II Parte – STATISTICA
Inferenza statistica per un singolo campione
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA: test sui parametri e scelta del modello (parte 3) Per effettuare test di qualsiasi natura è necessaria.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
Analisi della varianza (a una via)
1 Introduzione alla statistica per la ricerca Lezione III Dr. Stefano Guidi Siena, 18 Ottobre 2012.
Appunti di inferenza per farmacisti
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Corso di biomatematica lezione 10: test di Student e test F
Corso di biomatematica lezione 7-2: Test di significatività
Test di ipotesi X variabile casuale con funzione di densità (probabilità) f(x; q) q Q parametro incognito. Test Statistico: regola che sulla base di un.
STATISTICA a.a PARAMETRO t DI STUDENT
STATISTICA a.a LA STATISTICA INFERENZIALE
di cosa si occupa la statistica inferenziale?
Analisi bivariata Passiamo allo studio delle relazioni tra variabili
Confronto fra 2 popolazioni
Analisi della varianza
Il test di ipotesi Cuore della statistica inferenziale!
Verifica delle ipotesi su due campioni di osservazioni
Statistica Descrittiva
Le distribuzioni campionarie
Esercizi riepilogativi Analisi Univariata e Bivariata Analisi Fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Test parametrici I test studiati nelle lezioni precedenti (test- t, test-z) consentono la verifica di ipotesi relative al valore di specifici parametri.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
Il test del Chi-quadrato
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Analisi Bivariata I° Parte.
Analisi Bivariata: Test Statistici
Esercizi riepilogativi Analisi Univariata e Bivariata
La verifica d’ipotesi Docente Dott. Nappo Daniela
ATTIVITÀ PIANO LAUREE SCIENTIFICHE Laboratorio di Statistica
Domande riepilogative per l’esame
Lezione B.10 Regressione e inferenza: il modello lineare
Strumenti statistici in Excell
9) VERIFICA DI IPOTESI L’ipotesi statistica è una supposizione riguardante caratteristiche ignote ignote di una v.c. X. Es.: campionamento con ripetizione,
Test basati su due campioni Test Chi - quadro
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5.
“Teoria e metodi della ricerca sociale e organizzativa”
UNIVERSITA’ DEGLI STUDI DI PERUGIA
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Accenni di analisi monovariata e bivariata
ANALISI DELLA VARIANZA (ANOVA)
Correlazione e regressione lineare
Accademia europea dei pazienti sull'innovazione terapeutica Lo scopo e i fondamenti della statistica negli studi clinici.
La covarianza.
Accenni di analisi monovariata e bivariata. ANALISI MONOVARIATA Analisi delle informazioni ricavabili da una variabile alla volta, prescindendo dalle.
1111 Università di Napoli Federico II, Dipartimento di Scienze Economiche e Statistiche S. BalbiI test non parametrici.
INTRODUZIONE ALL’ANALISI DELLA VARIANZA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Test di ipotesi.
1 Corso di Laurea in Scienze e Tecniche psicologiche Esame di Psicometria Il T-Test A cura di Matteo Forgiarini.
Transcript della presentazione:

Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.

Lavoro di Gruppo: entro 1 novembre 2013 invio via del questionario da validare a e attendere la validazione con eventuali correzioni via prima di iniziare la somministrazione Consegna del Lavoro di Gruppo entro le ore 11 del 13 gennaio 2013 alla Sig.ra Luezza della segreteria (stampa della presentazione in power point e CD con questionario, base dati, programma SAS, output)

Test per lo studio dellassociazione tra variabili Nella teoria dei test, il ricercatore fornisce ipotesi riguardo la distribuzione della popolazione; tali Hp sono parametriche se riguardano il valore di uno ò più parametri della popolazione conoscendone la distribuzione a meno dei parametri stessi; non parametriche se prescindono dalla conoscenza della distribuzione della popolazione. Obiettivo dei test: come decidere se accettare o rifiutare unipotesi statistica alla luce di un risultato campionario. Esistono due ipotesi: H 0 e H 1, di cui la prima è lipotesi nulla, la seconda lipotesi alternativa la quale rappresenta, di fatto, lipotesi che il ricercatore sta cercando di dimostrare.

Cosa è unipotesi? Unipotesi è una affermazione (assunzione) circa il parametro della popolazione: –media della popolazione Lipotesi Nulla, H 0 rappresenta lipotesi che deve essere verificata, lIpotesi Alternativa, H 1 è generalmente lipotesi che il ricercatore sta cercando di dimostrare Esempio: In questa città, il costo medio della bolletta mensile per il cellulare è μ = $42 Test per lo studio dellassociazione tra variabili

Si può incorrere in due tipologie di errore: Stato di Natura Decisione Non Rifiutare H 0 No errore Errore Secondo Tipo Rifiutare H 0 Errore Primo Tipo Possibili Risultati Verifica di Ipotesi H 0 Falsa H 0 Vera No Errore

Errore di Primo Tipo –Rifiutare unipotesi nulla vera –Considerato un tipo di errore molto serio La probabilità dellerrore di primo tipo è Chiamato livello si significatività del test Fissato a priori dal ricercatore Test per lo studio dellassociazione tra variabili

Errore di Secondo Tipo –Non rifiutare unipotesi nulla falsa La probabilità dellerrore di secondo tipo è β Test per lo studio dellassociazione tra variabili

Stato di Natura Decisione Non Rifiutare H 0 No errore (1 - ) Errore Secondo Tipo ( β ) Rifiutare H 0 Errore Primo Tipo ( ) Possibili Risultati Verifica di Ipotesi H 0 Falsa H 0 Vera Legenda: Risultato (Probabilità) No Errore ( 1 - β ) Test per lo studio dellassociazione tra variabili

Errore di primo tipo ed errore di secondo tipo non si posso verificare contemporanemente Errore di primo tipo può occorrere solo se H 0 è vera Errore di secondo tipo può occorrere solo se H 0 è falsa Se la probabilità dellerrore di primo tipo ( ), allora la probabilità dellerrore di secondo tipo ( β ) Test per lo studio dellassociazione tra variabili

Lettura di un test statistico (1) Esempio: 1) Ipotesi b1= b2 =....=bk = 0H0:H0: H1:H1: bi = 0 2) Statistica test Statistica F 3) p-value Rappresenta la probabilità di commettere lerrore di prima specie. Può essere interpretato come la probabilità che H 0 sia vera in base al valore osservato della statistica test

Il p-value: - è la probabilità che H 0 sia vera in base al valore osservato della statistica test - è anche chiamato livello di significatività osservato - è il più piccolo valore di per il quale H 0 può essere rifiutata Lettura di un test statistico (2)

Lettura di un test statistico (3) Se p-value piccolo ( < α ) RIFIUTO H 0 Altrimenti ( >= α ) ACCETTO H 0 Regola di Decisione: confrontare il p-value con

TEST Tipo di testStatistica testTipo di variabili a cui si applica Indipendenza statistica Chi quadro2 variabili qualitative e/o quantitative discrete Indipendenza lineare t di Student2 variabili quantitative continue Indipendenza in media F di Fisheruna variabile qualitativa e una variabile quantitativa continua

Test χ² per lindipendenza statistica Si considera la distribuzione χ², con un numero di gradi di libertà pari a (k-1)(h-1), dove k è il numero di righe e h il numero di colonne della tabella di contingenza. Qui: H 0 :indipendenza statistica tra X e Y H 1 : dipendenza statistica tra X e Y La regione di rifiuto cade nella coda di destra della distribuzione Regione di rifiuto La regione di rifiuto è caratterizzata da valori relativamente elevati di χ²; se il livello di significatività è al 5%, si rifiuta per χ²> χ² 0.95

Test χ² per lindipendenza statistica

Sesso Mano dominante SinistraDestra Femmina Maschio Test χ² per lindipendenza statistica Esempio H 0 : assenza di associazione tra mano dominante e sesso (indipendenza statistica ) H 1 : mano dominante non è independente dal sesso (dipendenza statistica ) Se non cè associazione, allora P(Mancino | Femmina) = P(Mancino | Maschio) =P(Mancino)= 36/300= 0.12 Quindi ci aspetteremmo che Il 12% delle 120 femmine e Il 12% dei 180 maschi siano mancini…

Se H 0 è vera, allora la proporzione di donne mancine dovrebbe coincidere con la proporzione di uomini mancini Le due proporzioni precedenti dovrebbero coincidere con la proporzione generale di gente mancina Test χ² per lindipendenza statistica Esempio Sesso Mano dominante SinistraDestra Femmina Osservate = 12 Attese = 14.4 Osservate = 108 Attese = Maschio Osservate = 24 Attese = 21.6 Osservate = 156 Attese =

dove: O ij = frequenza osservate nella cella (i, j) E ij = frequenza attesa nella cella (i, j) r = numero di righe c = numero di colonne La statistica test chi-quadrato è: p-value = 0.32 > 0.05, quindi accettiamo H 0 e concludiamo che sesso e mano dominante non sono associate Test χ² per lindipendenza statistica Esempio Regola di Decisione: confrontare il p-value con

Test t per lindipendenza lineare Questo test verifica lipotesi di indipendenza lineare tra due variabili, partendo dallindice di correlazione lineare ρ. Si ha: H 0 : indipendenza lineare tra X e Y (ρ popolaz =0) H 1 : dipendenza lineare tra X e Y (ρ popolaz 0) La statistica test è distribuita come una t di Student con n-2 gradi di libertà, e tende a crescere allaumentare dellampiezza campionaria t= ρ (n-2)/ (1- ρ²)

Regione di rifiuto La regione di rifiuto è caratterizzata da valori relativamente elevati di t in modulo; se il livello di significatività è al 5%, si rifiuta per |t| >t 0,975 Test t per lindipendenza lineare

Test F per la verifica di ipotesi sulla differenza tra medie Si prende in considerazione la scomposizione della varianza; qui H 0 : le medie sono tutte uguali tra loro H 1 : esistono almeno due medie diverse tra loro La statistica test da utilizzare, sotto lipotesi H 0, si distribuisce come una F di Fisher con (c-1,n-1) gradi di libertà. Tende a crescere allaumentare della varianza tra medie e al diminuire della variabilità interna alle categorie. Cresce inoltre allaumentare dellampiezza campionaria.

La regione di rifiuto cade nella coda di destra della distribuzione, cioè è caratterizzata da valori relativamente elevati di F; se il livello di significatività è 5%, si rifiuta per F> F 0, Regione di rifiuto Test F per la verifica di ipotesi sulla differenza tra medie